คณิตศาสตร์

ศาสตร์ชนิดหนึ่ง
(เปลี่ยนทางจาก Mathematics)

คณิตศาสตร์เป็นศาสตร์ที่ครอบคลุมการค้นคว้าเกี่ยวกับ ปริมาณ โครงสร้าง การเปลี่ยนแปลง และปริภูมิ มีการพิสูจน์ผ่านการให้เหตุผลที่รัดกุม นำไปสู่ความรู้ที่เรียกว่าทฤษฎีบทหรือทฤษฎีทางคณิตศาสตร์ เพื่อใช้งานในศาสตร์เชิงประจักษ์ อาทิ วิทยาศาสตร์และฟิสิกส์ หรือใช้ในคณิตศาสตร์เอง คณิตศาสตร์แบ่งย่อยออกเป็นหลายสาขา ซึ่งรวมไปถึงทฤษฎีจำนวน ซึ่งศึกษาจำนวน, พีชคณิต ซึ่งศึกษาสูตร สมการและโครงสร้างที่เกี่ยวข้อง, เรขาคณิต ซึ่งศึกษารูปร่าง รูปทรงและปริภูมิที่บรรจุรูปร่างรูปทรงต่าง ๆ, คณิตวิเคราะห์ ซึ่งศึกษาการเปลี่ยนแปลงแบบต่อเนื่อง และทฤษฎีเซตที่ปัจจุบันใช้เป็นรากฐานของคณิตศาสตร์ทั้งปวง

คณิตศาสตร์มุ่งอธิบายและจัดการวัตถุเชิงนามธรรมที่เรียกว่าวัตถุทางคณิตศาสตร์ ซึ่งอาจจะมีที่มาจากการเปลี่ยมมุมมองสิ่งต่าง ๆ ในธรรมชาติให้เป็นนามธรรม หรือมีที่มาจากวัตถุนามธรรมที่ไม่ได้มีที่มาจากธรรมชาติแต่เกิดจากการกำหนดให้มีสมบัติบางอย่างให้มีขึ้นมา สมบัติเหล่านั้นเรียกว่า สัจพจน์ คณิตศาสตร์ใช้เพียงเหตุผลเท่านั้นเพื่อพิสูจน์สมบัติของวัตถุต่าง ๆ โดยบทพิสูจน์ประกอบไปด้วยข้อความที่เกิดจากการอ้างเหตุผลจากความรู้ก่อนหน้า สิ่งที่นับเป็นความรู้ก่อนหน้าได้แก่ ทฤษฎีบท สัจพจน์ หรือหากเป็นคณิตศาสตร์ที่เกิดจากการสร้างแนวคิดนามธรรมจากตัวอย่างที่มีในธรรมชาติ สามารถถือว่าสมบัติพื้นฐานของธรรมชาติที่ทราบว่าจริงเป็นความรู้ก่อนหน้าได้[1]

คณิตศาสตร์มีความสำคัญอย่างขาดไม่ได้ในศาสตร์ต่าง ๆ อย่าง วิทยาศาสตร์ธรรมชาติ วิศวกรรมศาสตร์ แพทยศาสตร์ การเงิน วิทยาการคอมพิวเตอร์ และสังคมวิทยา ถึงแม้ว่าวิทยาศาสตร์จะใช้จำลองปรากฏการณ์ต่าง ๆ ในธรรมชาติ ความจริงพื้นฐานของคณิตศาสตร์เป็นอิสระจากการทดลองทางวิทยาศาสตร์ใด ๆ สาขาบางสาขาของคณิตศาสตร์ เช่น สถิติศาสตร์และทฤษฎีเกมถูกพัฒนาไปพร้อมกับการประยุกต์ใช้ในศาสตร์อื่น ๆ จึงได้ชื่อว่า คณิตศาสตร์ประยุกต์ ในขณะที่สาขาอื่น ๆ ไม่ได้ถูกสร้างขึ้นเพื่อประยุกต์ใช้ในด้านอื่น จะเรียกว่า คณิตศาสตร์บริสุทธิ์ แต่ในภายหลังอาจค้นพบการประยุกต์ใช้ได้[2][3]

ตามประวัติศาสตร์แล้ว แนวคิดเรื่องการพิสูจน์และความรัดกุมทางคณิตศาสตร์ปรากฏขึ้นครั้งแรกในคณิตศาสตร์กรีกโบราณ โดยเฉพาะอย่างยิ่งในเอเลเมนส์ของยุคลิด[4] คณิตศาสตร์เดิมทีถูกแบ่งออกเป็นสองส่วนใหญ่ ๆ คือเรขาคณิตและเลขคณิต ซึ่งเป็นการดำเนินการกับจำนวนธรรมชาติและเศษส่วน จนกระทั่งในศตวรรษที่ 16 และ 17 พีชคณิตและแคลคูลัสกณิกนันต์เริ่มปรากฏขึ้นเป็นสาขาใหม่ ตั้งแต่นั้นเป็นต้นมา การค้นคว้าใหม่ ๆ ในคณิตศาสตร์และวิทยาศาสตร์ซึ่งเกี่ยวเนื่องกันนำไปสู่การพัฒนาศาสตร์ทั้งสอง[5] เมื่อถึงปลายศตวรรษที่ 19 วิกฤติการณ์รากฐานของคณิตศาสตร์นำไปสู่การจัดระบบของระเบียบวิธีเชิงสัจพจน์[6] ทำให้เกิดสาขาคณิตศาสตร์ใหม่ ๆ จำนวนมากและการประยุกต์ในด้านต่าง ๆ การจัดหมวดหมู่คณิตศาสตร์ในปัจจุบันที่เรียกว่า Mathematics Subject Classification ระบุว่ามีสาขาของคณิตศาสตร์ในขั้นแรกสุดมากกว่า 60 สาขา

ที่มาของคำ

แก้

คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (สันสกฤต: गणित) ซึ่งแปลว่าที่ถูกนับ ที่ถูกคำนวณ หรือ คณิตศาสตร์[7] คำว่า คณิต มีราก คณฺ (गण्) ซึ่งหมายถึง นับ คำนวณ และคำว่า ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ ในภาษาอังกฤษคำว่าคณิตศาสตร์ตรงกับคำว่า mathematics ซึ่งมาจากคำภาษากรีกโบราณ μάθημα (máthēma) ซึ่งดั้งเดิมหมายถึง "สิ่งที่ได้เรียน" "สิ่งที่จะได้ทราบ" จึงขยายความหมายออกไปรวมถึงความหมาย "วิทยาศาสตร์, ความรู้, และการเรียน"[8] ในอเมริกาเหนือนิยมย่อคำว่า mathematics ว่า math ส่วนประเทศอื่น ๆ ที่ใช้ภาษาอังกฤษนิยมย่อว่า maths

จุดมุ่งหมายของคณิตศาสตร์

แก้

คณิตศาสตร์มีจุดเริ่มต้นจากปัญหาจำนวนมากที่หลากหลาย ในยุคแรกเริ่มคณิตศาสตร์มาจากความจำเป็นเพื่อการค้า การรังวัดที่ดิน สถาปัตยกรรมศาสตร์และดาราศาสตร์ ในขณะที่ปัจจุบัน วิทยาศาสตร์เป็นสาขาสำคัญที่เสนอปัญหาและนำไปสู่การค้นคว้าหัวข้อใหม่ ๆ สำหรับนักคณิตศาสตร์ ทั้งนี้ยังไม่รวมถึงข้อปัญหาที่เกิดขึ้นจากการศึกษาคณิตศาสตร์ในตัวมันเองของนักคณิตศาสตร์ด้วย

ความรู้ทางด้านคณิตศาสตร์เพิ่มขึ้นอย่างสม่ำเสมอ ผ่านทางการวิจัยและการประยุกต์ใช้ คณิตศาสตร์เป็นเครื่องมืออันหนึ่งของวิทยาศาสตร์ อย่างไรก็ตาม การคิดค้นทางคณิตศาสตร์ไม่จำเป็นต้องมีเป้าหมายอยู่ที่การนำไปใช้ทางวิทยาศาสตร์ (ดู คณิตศาสตร์บริสุทธิ์ และคณิตศาสตร์ประยุกต์)

นอกจากนี้ นักคณิตศาสตร์หลายคนก็ทำงานเพื่อเป้าหมายเชิงสุนทรียภาพเท่านั้น โดยมองว่าคณิตศาสตร์เป็นศาสตร์เชิงศิลปะ มากกว่าที่จะเป็นศาสตร์เพื่อการนำไปประยุกต์ใช้ (ดังเช่น จี. เอช. ฮาร์ดี ที่ได้กล่าวไว้ในหนังสือ A Mathematician's Apology) ; แรงผลักดันในการทำงานเช่นนี้ มีลักษณะไม่ต่างไปจากที่กวีและนักปรัชญาได้ประสบ และเป็นสิ่งที่ไม่สามารถอธิบายได้ อัลเบิร์ต ไอน์สไตน์ กล่าวว่า คณิตศาสตร์เป็นราชินีของวิทยาศาสตร์ ในหนังสือ Ideas and Opinions ของเขา

ประวัติ

แก้
 
ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ โรงเรียนแห่งเอเธนส์[9]

ทฤษฎีของตรรกศาสตร์ปรากฏขึ้นในหลายวัฒนธรรมทั่วโลก เช่นในอินเดีย จีน กรีกโบราณและโลกอิสลาม ตรรกศาสตร์ที่ปรากฏในวัฒนธรรมกรีก โดยเฉพาะตรรกศาสตร์แบบอริสโตเติลแบบที่ปรากฏในงาน Organon ถูกใช้แพร่หลายในโลกตะวันตก

ในช่วงศตวรรษที่ 18 นักคณิตศาสตร์ที่สนในปรัชญา เช่นไลบ์นิซ และแลมเบิร์ต มีความพยายามศึกษาตรรกศาสตร์ให้อยู่ในรูปสัญลักษณ์ หรือในเชิงพีชคณิต แต่งานที่พวกเขาทำนั้นไม่เป็นที่แพร่หลายเท่าใดนัก จนกระทั่งจอร์จ บูลและตามด้วยออกัสตัส เดอ มอร์แกน ในช่วงกลางของคริสต์ศตวรรษที่ 19 ได้นำเสนอตรรกศาสตร์แบบอริสโตเติลผ่านรูปแบบเชิงพีชคณิต จุดนี้ก่อให้เกิดการพัฒนาเครื่องมือ ที่สามารถใช้เพื่อศึกษามโนทัศน์พื้นฐานของคณิตศาสตร์ได้ คงจะไม่ถูกนักถ้าจะกล่าวว่าการโต้แย้งเชิงรากฐานที่มีขึ้นในช่วง ค.ศ. 1900 - 1925 ได้พบกับคำตอบที่น่าพอใจแล้ว แต่อย่างไรก็ตามตรรกศาสตร์ 'แนวใหม่' นี้ก็ได้ช่วยให้ความกระจ่างในด้านของปรัชญาคณิตศาสตร์เป็นอย่างยิ่ง

ในขณะที่พัฒนาการตามแนวทางดั่งเดิมของตรรกศาสตร์ (ดูรายการบทความด้านตรรกศาสตร์) นั้น ให้ความสำคัญอย่างสูงกับ รูปแบบของการให้เหตุผล มุมมองของคณิตตรรกศาสตร์ในปัจจุบันกลับสามารถกล่าวได้ว่าเป็น การศึกษาเชิงการจัดกลุ่มของเนื้อหา (the combinatorial study of content) ซึ่งครอบคลุมถึงส่วนที่เป็น เชิงสังเคราะห์ (เช่น การส่งข้อความจากภาษาเชิงรูปนัยไปยังคอมไพเลอร์เพื่อเปลี่ยนเป็นภาษาเครื่อง) และส่วนที่เป็น เชิงความหมาย (การสร้างโมเดล หรือเซตของโมเดลทั้งหมดในทฤษฎีโมเดล)

ผลงานตีพิมพ์สำคัญคือ Begriffsschrift ของ แฟรเก และ Principia Mathematica ของเบอร์ทรันด์ รัซเซล

พัฒนาการ

แก้
 
นักคณิตศาสตร์กรีกพีทาโกรัส (ค.ศ. 570 - ค.ศ. 495 ก่อนคริสต์ศักราช) ได้รับการยกย่องในเรื่องที่เกี่ยวข้องกับการค้นพบทฤษฎีบทพีทาโกรัส (Pythagorean theorem)

วิวัฒนาการของคณิตศาสตร์อาจถูกมองว่าเป็นชุดของการเพิ่มขึ้นของภาวะนามธรรมหรืออาจเป็นการขยายตัวของวิชาที่เกี่ยวกับสสาร ภาวะนามธรรมที่เกิดขึ้นเป็นครั้งแรกนั้น, มีส่วนเกี่ยวข้องกับสัตว์หลาย ๆ ชนิด, [10] เป็นความน่าจะเป็นที่เกี่ยวข้องกับจำนวน

สาขาของคณิตศาสตร์

แก้

ในเชิงภาพรวมอาจกล่าวได้ว่า คณิตศาสตร์สามารถแบ่งออกเป็นสาขาย่อย ๆ ตามสิ่งที่ศึกษาได้เป็น การศึกษาปริมาณ โครงสร้าง ปริภูมิและความเปลี่ยนแปลง ซึ่งตรงกับสาขาเลขคณิต พีชคณิต เรขาคณิต และคณิตวิเคราะห์ตามลำดับ นอกจากนี้เราอาจพิจารณาคณิตศาสตร์ผ่านความสมพันธ์กับสาขาอื่น ๆ เช่น คณิตตรรกศาสตร์กับตรรกศาสตร์ คณิตศาสตร์ประยุกต์กับวิทยาศาสตร์ ปัจจุบันเราพบว่าหลายสาขาของคณิตศาสตร์ที่ดูผิวเผินจะไม่เกี่ยวข้องกัน กลับสัมพันธ์กันอย่างลึกซึ้ง เช่น กรุปกาลัวส์ พื้นผิวรีมันน์และทฤษฎีจำนวน ซึ่งดูแยกออกจากกันโดยสิ้นเชิงนั้น เกี่ยวเนื่องกันผ่านมุมมองของโปรแกรมแลงแลนดส์

รากฐานและปรัชญา

แก้
หลังจากการพัฒนาทฤษฎีเซตในปลายศตวรรษที่ 19 ทำให้ทฤษฎีเซตกลายเป็นรากฐานของคณิตศาสตร์ที่สำคัญมากที่สุดในรูปแบบหนึ่ง ความพยายามทำความเข้าใจรากฐานนี้ส่งผลให้เกิดการศึกษาคณิตตรรกศาสตร์ และปรัชญาคณิตศาสตร์

ปรัชญาของคณิตศาสตร์

     
 
คณิตตรรกศาสตร์ ทฤษฎีเซต ทฤษฎีแคทิกอรี ทฤษฎีการคำนวณ
ปรัชญาคณิตศาสตร์ - รากฐานของคณิตศาสตร์ - ทฤษฎีเซต - ตรรกศาสตร์สัญลักษณ์ - ทฤษฎีโมเดล - ทฤษฎีแคทิกอรี - ตรรกศาสตร์

คณิตศาสตร์บริสุทธิ์

แก้

ปริมาณ ระบบจำนวนและทฤษฎีจำนวน

แก้
การศึกษาเกี่ยวกับปริมาณเริ่มต้นจากจำนวน จำนวนแรก ๆ คือจำนวนนับหรือจำนวนธรรมชาติ   ซึ่งเป็นที่รู้จักกันดี ก่อนจะขยายไปสู่จำนวนเต็ม   และการดำเนินการที่เกี่ยวข้อง เช่น การบวก การลบ การคูณ การหาร ซึ่งเรียกรวมว่าเป็นการศึกษาเลขคณิต สมบัติที่ซับซ้อนมากขึ้นของจำนวนเต็มถูกศึกษาในวิชาทฤษฎีจำนวน ซึ่งมีทฤษฎีบทที่มีชื่อเสียงเช่น ทฤษฎีบทสุดท้ายของแฟร์มา นอกจากนี้ทฤษฎีจำนวนยังมีข้อความคาดการณ์จำนวนมากที่ยังแก้ไม่ได้ เช่น ข้อความคาดการณ์จำนวนเฉพาะคู่แฝด และข้อความคาดการณ์ของก็อลท์บัค
ระบบจำนวนได้รับการพัฒนาเพิ่มขึ้นเป็นระบบจำนวนตรรกยะหรือเศษส่วน   และในภายหลังเป็นส่วนหนึ่งของระบบจำนวนจริง   อีกที ซึ่งกำหนดให้เป็นลิมิตของลำดับของจำนวนตรรกยะและเป็นระบบจำนวนที่มีความต่อเนื่อง ระบบจำนวนจริงถูกขยายนัยทั่วไปเป็นระบบจำนวนเชิงซ้อน   และจากทฤษฎีบทหลักมูลของพีชคณิต ทุกสมการพหุนามในตัวแปรเดียวที่มีสัมประสิทธิ์เป็นจำนวนเชิงซ้อน และไม่ใช่พหุนามคงตัวจะมีรากเสมอ
ระบบจำนวนนับยังถูกขยายต่อโดยแบ่งตามสมบัติที่เกี่ยวข้อง เนื่องจากจำนวนนับมีหน้าที่ได้สองแบบ คือ จำนวนนับใช้เพื่อบ่งบอกจำนวนของวัตถุในกลุ่ม ๆ หนึ่ง และจำนวนนับใช้เพื่อบ่งบอกอันดับของวัตถุในกลุ่ม ๆ หนึ่ง แนวคิดแรกนำไปสู่จำนวนเชิงการนับซึ่งสามารถใช้เปรียบเทียบขนาดของเซตอนันต์ได้ และแนวคิดหลักนำไปสู่แนวคิดเรื่องจำนวนเชิงอันดับที่
           
จำนวนธรรมชาติ จำนวนเต็ม จำนวนตรรกยะ จำนวนจริง จำนวนเชิงซ้อน จำนวนเชิงการนับ
จำนวน - จำนวนธรรมชาติ - จำนวนเต็ม - จำนวนตรรกยะ - จำนวนจริง - จำนวนเชิงซ้อน - จำนวนเชิงพีชคณิต - ควอเทอร์เนียน - ออกโทเนียน - จำนวนเชิงอันดับที่ - จำนวนเชิงการนับ - ลำดับของจำนวนเต็ม - ค่าคงที่ทางคณิตศาสตร์ - อนันต์

โครงสร้าง

แก้
สาขาเหล่านี้ ศึกษาขนาดและความสมมาตรของจำนวนและวัตถุทางคณิตศาสตร์ต่าง ๆ
       
ทฤษฎีจำนวน ทฤษฎีกรุป ทฤษฎีกราฟ ทฤษฎีอันดับ
พีชคณิตนามธรรม - ทฤษฎีจำนวน - ทฤษฎีกรุป - ทอพอโลยี - พีชคณิตเชิงเส้น - ทฤษฎีแคทิกอรี - ทฤษฎีอันดับ

ปริภูมิ

แก้
สาขาเหล่านี้ มักใช้วิธีการเชิงรูปภาพมากกว่าในสาขาอื่น ๆ
         
 
เรขาคณิต ตรีโกณมิติ เรขาคณิตเชิงอนุพันธ์ ทอพอโลยี เรขาคณิตสาทิสรูป ทฤษฎีเมเชอร์
ทอพอลอยี - เรขาคณิต - ตรีโกณมิติ - เรขาคณิตเชิงพีชคณิต - เรขาคณิตเชิงอนุพันธ์ - ทอพอโลยีเชิงอนุพันธ์ - ทอพอโลยีเชิงพีชคณิต - พีชคณิตเชิงเส้น - เรขาคณิตสาทิสรูป

ความเปลี่ยนแปลง

แก้
หัวข้อเหล่านี้ เกี่ยวข้องกับการวัดความเปลี่ยนแปลงของฟังก์ชันทางคณิตศาสตร์ และความเปลี่ยนแปลงระหว่างจำนวน
           
แคลคูลัส แคลคูลัสเวกเตอร์ การวิเคราะห์เชิงซ้อน สมการเชิงอนุพันธ์ ระบบพลวัต ทฤษฎีความอลวน
แคลคูลัส - แคลคูลัสเวกเตอร์ - คณิตวิเคราะห์ - การวิเคราะห์เชิงจริง - การวิเคราะห์เชิงซ้อน - ทฤษฎีเมเชอร์ - การวิเคราะห์เชิงฟังก์ชัน - การวิเคราะห์ฟูร์ริเยร์ - สมการเชิงอนุพันธ์ - ระบบพลวัติ - ทฤษฎีความอลวน - รายการฟังก์ชัน

วิยุตคณิต

แก้
วิยุตคณิต คือแขนงของคณิตศาสตร์ที่สนใจวัตถุที่มีค่าเฉพาะเจาะจงที่แตกต่างกัน
       
คณิตศาสตร์เชิงการจัด ทฤษฎีการคำนวณ วิทยาการเข้ารหัสลับ ทฤษฎีกราฟ
คณิตศาสตร์เชิงการจัด - ทฤษฎีการคำนวณ - วิทยาการเข้ารหัสลับ - ทฤษฎีกราฟ

คณิตศาสตร์ประยุกต์

แก้
สาขาในคณิตศาสตร์ประยุกต์ ใช้ความรู้ทางคณิตศาสตร์เพื่อแก้ปัญหาในโลกของความเป็นจริง
คณิตศาสตร์ฟิสิกส์ - กลศาสตร์ - กลศาสตร์ของไหล - การวิเคราะห์เชิงตัวเลข - การหาค่าเหมาะที่สุด - ความน่าจะเป็น - สถิติศาสตร์ - คณิตศาสตร์การเงิน - ทฤษฎีเกม - คณิตศาสตร์ชีววิทยา - วิทยาการเข้ารหัสลับ - ทฤษฎีข้อมูล - ทฤษฎีระบบควบคุม


เครื่องมือทางคณิตศาสตร์

แก้

อ้างอิง

แก้
  1. Hipólito, Inês Viegas (August 9–15, 2015). "Abstract Cognition and the Nature of Mathematical Proof". ใน Kanzian, Christian; Mitterer, Josef; Neges, Katharina (บ.ก.). Realismus – Relativismus – Konstruktivismus: Beiträge des 38. Internationalen Wittgenstein Symposiums [Realism – Relativism – Constructivism: Contributions of the 38th International Wittgenstein Symposium] (PDF) (ภาษาเยอรมัน และ อังกฤษ). Vol. 23. Kirchberg am Wechsel, Austria: Austrian Ludwig Wittgenstein Society. pp. 132–134. ISSN 1022-3398. OCLC 236026294. เก็บ (PDF)จากแหล่งเดิมเมื่อ November 7, 2022. สืบค้นเมื่อ January 17, 2024. (at ResearchGate   เก็บถาวร พฤศจิกายน 5, 2022 ที่ เวย์แบ็กแมชชีน)
  2. Peterson 1988, p. 12.
  3. Wigner, Eugene (1960). "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". Communications on Pure and Applied Mathematics. 13 (1): 1–14. Bibcode:1960CPAM...13....1W. doi:10.1002/cpa.3160130102. S2CID 6112252. เก็บจากแหล่งเดิมเมื่อ กุมภาพันธ์ 28, 2011.
  4. Wise, David. "Eudoxus' Influence on Euclid's Elements with a close look at The Method of Exhaustion". The University of Georgia. เก็บจากแหล่งเดิมเมื่อ June 1, 2019. สืบค้นเมื่อ January 18, 2024.
  5. Alexander, Amir (September 2011). "The Skeleton in the Closet: Should Historians of Science Care about the History of Mathematics?". Isis. 102 (3): 475–480. doi:10.1086/661620. ISSN 0021-1753. MR 2884913. PMID 22073771. S2CID 21629993.
  6. Kleiner, Israel (December 1991). "Rigor and Proof in Mathematics: A Historical Perspective". Mathematics Magazine. Taylor & Francis, Ltd. 64 (5): 291–314. doi:10.1080/0025570X.1991.11977625. eISSN 1930-0980. ISSN 0025-570X. JSTOR 2690647. LCCN 47003192. MR 1141557. OCLC 1756877. S2CID 7787171.
  7. Monier-Williams, Monier (2009-11-26), "A Sanskrit-English Dictionary", A Sanskrit-English Dictionary, Oxford: At the Clarendon Press, p. 343, สืบค้นเมื่อ 2025-02-08
  8. "mathematic | Origin and meaning of mathematic by Online Etymology Dictionary". www.etymonline.com (ภาษาอังกฤษ).
  9. ไม่มีภาพหรือคำบรรยายลักษณะรูปร่างของยุคลิดหลงเหลือมายังปัจจุบัน ดังนั้นภาพยุคลิดในงานศิลปะทั้งหมดมาจากจินตนาการของผู้เขียน (ดูเพิ่มที่ ยุคลิด)
  10. S. Dehaene; G. Dehaene-Lambertz; L. Cohen (Aug 1998). "Abstract representations of numbers in the animal and human brain". Trends in Neuroscience. 21 (8): 355–361. doi:10.1016/S0166-2236(98)01263-6. ISSN 0166-2236. PMID 9720604.

ดูเพิ่ม

แก้

แหล่งข้อมูลอื่น

แก้

ภาษาไทย

แก้

ภาษาอื่น

แก้

ชุมชนไทย

แก้