ฟิสิกส์
ฟิสิกส์ (อังกฤษ: Physics, กรีก: φυσικός [phusikos], "เป็นธรรมชาติ" และ กรีก: φύσις [phusis], "ธรรมชาติ") เป็นวิทยาศาสตร์สาขาธรรมชาติที่ศึกษาเกี่ยวกับเรื่องสสาร [1] เช่น การเคลื่อนที่ของสสาร นิสัยของสสารรวมถึงกาล-อวกาศ และเรื่องเกี่ยวกับพลังงานและแรง เช่น สนาม และคลื่น [2] [3] ฟิสิกส์เป็นหนึ่งในวิชาพื้นฐานที่สุดของวิทยาศาสตร์ โดยเป้าหมายคือการศึกษาว่า "จักรวาลทำงานอย่างไร"
ฟิสิกส์เป็นความรู้พื้นฐานที่นำไปใช้ในการพัฒนาเทคโนโลยีเกี่ยวกับการผลิต และเครื่องใช้ต่าง ๆ เพื่ออำนวยความสะดวกแก่มนุษย์ ตัวอย่างเช่น การนำความรู้พื้นฐานทางด้านแม่เหล็กไฟฟ้า ไปใช้ในอุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ (โทรทัศน์ วิทยุ คอมพิวเตอร์ โทรศัพท์มือถือ ฯลฯ) อย่างแพร่หลาย หรือ การนำความรู้ทางอุณหพลศาสตร์ไปใช้ในการพัฒนาเครื่องจักรกลและยานพาหนะ ยิ่งไปกว่านั้นความรู้ทางฟิสิกส์บางอย่างอาจนำไปสู่การสร้างเครื่องมือใหม่ที่ใช้ในวิทยาศาสตร์สาขาอื่น เช่น การนำความรู้เรื่องกลศาสตร์ควอนตัม ไปใช้ในการพัฒนากล้องจุลทรรศน์อิเล็กตรอนที่ใช้ในชีววิทยา เป็นต้น
นักฟิสิกส์ศึกษาธรรมชาติ ตั้งแต่สิ่งที่เล็กมาก เช่น อะตอม และ อนุภาคย่อย ไปจนถึงสิ่งที่มีขนาดใหญ่มหาศาล เช่น จักรวาล จึงกล่าวได้ว่า ฟิสิกส์ คือ ปรัชญาธรรมชาติเลยทีเดียว[ต้องการอ้างอิง]
ในบางครั้ง ฟิสิกส์ ถูกกล่าวว่าเป็น แก่นแท้ของวิทยาศาสตร์ (fundamental science) เนื่องจากสาขาอื่น ๆ ของวิทยาศาสตร์ธรรมชาติ เช่น ชีววิทยา หรือ เคมี ต่างก็มองได้ว่าเป็น ระบบของวัตถุต่าง ๆ หลายชนิดที่เชื่อมโยงกัน โดยที่เราสามารถสามารถอธิบายและทำนายพฤติกรรมของระบบดังกล่าวได้ด้วยกฎต่าง ๆ ทางฟิสิกส์ ยกตัวอย่างเช่น คุณสมบัติของสารเคมีต่าง ๆ สามารถพิจารณาได้จากคุณสมบัติของโมเลกุลที่ประกอบเป็นสารเคมีนั้น ๆ โดยคุณสมบัติของโมเลกุลดังกล่าว สามารถอธิบายและทำนายได้อย่างแม่นยำ โดยใช้ความรู้ฟิสิกส์สาขาต่าง ๆ เช่น กลศาสตร์ควอนตัม, อุณหพลศาสตร์ หรือ ทฤษฎีแม่เหล็กไฟฟ้า เป็นต้น
ในปัจจุบัน วิชาฟิสิกส์เป็นวิชาที่มีขอบเขตกว้างขวางและได้รับการพัฒนามาแล้วอย่างมาก งานวิจัยทางฟิสิกส์มักจะถูกแบ่งเป็นสาขาย่อย ๆ หลายสาขา อย่างเช่น ฟิสิกส์ของสสารควบแน่น ฟิสิกส์อนุภาค ฟิสิกส์อะตอม-โมเลกุล-และทัศนศาสตร์ ฟิสิกส์ดาราศาสตร์ ฟิสิกส์พลศาสตร์ที่ไม่เป็นเชิงเส้น-และเคออส และ ฟิสิกส์ของไหล (สาขาย่อยฟิสิกส์พลาสมาสำหรับงานวิจัยฟิวชั่น) นอกจากนี้ยังอาจแบ่งการทำงานของนักฟิสิกส์ออกได้อีกสองทาง คือ นักฟิสิกส์ที่ทำงานด้านทฤษฎี และนักฟิสิกส์ที่ทำงานทางด้านการทดลอง โดยที่งานของนักฟิสิกส์ทฤษฎีเกี่ยวข้องกับการพัฒนาทฤษฎีใหม่ แก้ไขทฤษฎีเดิม หรืออธิบายการทดลองใหม่ ๆ ในขณะที่ งานการทดลองนั้นเกี่ยวข้องกับการทดสอบทฤษฎีที่นักฟิสิกส์ทฤษฎีสร้างขึ้น การตรวจทดสอบการทดลองที่เคยมีผู้ทดลองไว้ หรือแม้แต่ การพัฒนาการทดลองเพื่อหาสภาพทางกายภาพใหม่ ๆ
ทั้งนี้ขอบเขตของวิชาฟิสิกส์ภาคปฏิบัติ ขึ้นอยู่กับขีดจำกัดของการสังเกต และประสิทธิภาพของเครื่องมือวัด ถ้าเทคโนโลยีของเครื่องมือวัดพัฒนามากขึ้น ข้อมูลที่ได้จะมีความละเอียดและถูกต้องมากขึ้น ทำให้ขอบเขตของวิชาฟิสิกส์ยิ่งขยายออกไป ข้อมูลที่ได้ใหม่ อาจไม่สอดคล้องกับสิ่งที่ทฤษฎีและกฎที่มีอยู่เดิมทำนายไว้ ทำให้ต้องสร้างทฤษฏีใหม่ขึ้นมาเพื่อทำให้ความสามารถในการทำนายมีมากขึ้น
งานวิจัยทางฟิสิกส์
แก้ฟิสิกส์เชิงทดลอง กับ ฟิสิกส์เชิงทฤษฎี
แก้งานวิจัยทางฟิสิกส์แบ่งออกได้เป็น 2 ประเภทใหญ่ ๆ ที่แตกต่างกันอย่างชัดเจนดังนี้
- ฟิสิกส์เชิงทดลอง (experimental physics)
คือการสังเกต, การทดลอง และเก็บรวบรวมข้อมูล มาวิเคราะห์เพื่อทดสอบกฎของฟิสิกส์ที่มีอยู่ ว่าถูกต้องหรือไม่
ในปัจจุบันโฉมหน้าของการทดลองทางฟิสิกส์แตกต่างจากการทดลองของนักฟิสิกส์ในอดีตเมื่อร้อยกว่าปีที่แล้วมาก ในสมัยก่อนนับตั้งแต่กาลิเลโอเป็นต้นมา การทดลองเพื่อแสวงความรู้ใหม่ ๆ ที่สามารถพลิกโฉมความรู้เดิมที่มีอยู่อาจทำได้โดยการทดลองที่ไม่ซับซ้อนมากอาจดำเนินการทดลองได้โดยคนเพียงคนเดียว แม้กระทั่งช่วงระหว่างปี ค.ศ. 1840 - 1900 ซึ่งเป็นช่วงบุกเบิกเรื่องแรงแม่เหล็กไฟฟ้าอุปกรณ์ของไมเคิล ฟาราเดย์ก็สามารถสร้างได้อย่างง่าย ๆ ด้วยตนเอง แม้กระทั่งอุปกรณ์ที่นำไปสู่การค้นพบอิเล็กตรอนซึ่งก็คือหลอดรังสีแคโทดก็ไม่ได้ซับซ้อนเมื่อเทียบกับหลอดภาพของจอคอมพิวเตอร์ในปัจจุบัน
ในยุคปัจจุบันการสร้างเครื่องมือเพื่อบุกเบิกพรมแดนใหม่ในฟิสิกส์ โดยเฉพาะในส่วนของวิชาฟิสิกส์อนุภาคและจักรวาลวิทยาเป็นเรื่องที่ สลับซับซ้อนมาก บางโครงการอย่าง Gravity Probe B[1] ซึ่งเป็นดาวเทียมทำหน้าที่ตรวจสอบทฤษฎีสัมพัทธภาพทั่วไปของไอน์สไตน์ก็ต้องใช้เวลาในการดำเนินโครงการถึง 40 กว่าปี (ตั้งแต่เสนอโครงการโดย Leonard Schiff เมื่อปี ค.ศ. 1961 ซึ่งเพิ่งจะได้ปล่อยดาวเทียมสู่วงโคจรเมื่อปี ค.ศ. 2004 ซึ่งตัว Schiff เองก็ถึงแก่กรรมไปก่อนหน้านั้นแล้ว) โครงการบางโครงการก็ต้องอาศัยการร่วมมือกันในระดับนานาชาติที่ต้องสนับสนุนทั้งกำลังคนและงบประมาณ เช่น โครงการเครื่องเร่งอนุภาค Large Hadron Collider (LHC) [2] ที่ CERN (เป็นศูนย์วิจัยที่ปรากฏในตอนต้นของนิยาย เทวากับซาตาน ของ แดน บราวน์) ก็ต้องใช้อุโมงค์ใต้ดินเป็นวงแหวนที่มีเส้นรอบวงถึง 27 กิโลเมตร ซึ่งเป็นเทคโนโลยีที่แพงเกินกว่าที่จะเป็นโครงการที่สร้างโดยประเทศเดียว ในการที่จะเสนอขออนุมัติโครงการเพื่อสร้างการทดลองใหญ่โตที่แสนแพงเช่นนี้ต้องอาศัยความรู้ทางด้านฟิสิกส์เชิงทฤษฎีช่วยเป็นอย่างมาก หลายครั้งก่อนที่จะเสนอโครงการจะต้องมีการสร้างแบบจำลองที่ละเอียดและซับซ้อนเพื่อที่จะทำนายล่วงหน้าว่าเครื่องมือที่สร้างขึ้นจะวัดอะไรได้บ้างและผลการทดลองจะออกมาในลักษณะใด ตัวอย่างเช่น เครื่องเร่งอนุภาค LHC ก็ต้องมีการคำนวณมาก่อนว่ามวลของอนุภาคฮิกส์ ทำนายจากแบบจำลองSuper Symmetryจะอยู่ในระดับพลังงานใด จะตรวจวัดได้ไหมเป็นต้น ซึ่งแน่นอนว่า มวลของอนุภาคฮิกส์ จากแบบจำลองต่าง ๆ ก็เป็นเพียงหนึ่งในอีกหลาย ๆ ปรากฏการณ์ที่ฟิสิกส์ทฤษฎีทำทายไว้ล่วงหน้าให้ได้ก่อนสร้างเครื่องเร่งอนุภาคอย่าง LHC นั่นคือ นักฟิสิกส์ในปัจจุบันต้องมั่นใจถึงระดับหนึ่งว่าผลการทดลองจากโครงการต่าง ๆ จะต้องคุ้มค่ากับเงินที่ลงทุนไป
จากขนาดของข้อมูลที่ได้ในแต่ละการทดลองใหญ่ ๆ ในปัจจุบัน ทำให้นักฟิสิกส์ไม่สามารถทำอย่างสมัยก่อน เช่น Heinrich R. Hertz (ผู้ค้นพบคลื่นแม่เหล็กไฟฟ้า) ซึ่งสามารถทำการทดลอง นำผลการทดลองไปวิเคราะห์และสร้างทฤษฎีที่อธิบายได้ด้วยตนเองเพียงคนเดียว ในปัจจุบันการวิเคราะห์ข้อมูลที่มาจากการทดลองขนาดใหญ่ ๆ เช่น เครื่องเร่งอนุภาค หรือ ดาวเทียมสำรวจอวกาศต่าง ๆ ต้องอาศัยความร่วมมือกัน ของสถาบันวิจัยหลาย ๆ แห่งทั่วโลก ดังนั้นจึงไม่ใช่เรื่องแปลกในปัจจุบันที่นักฟิสิกส์บางคนอาจอุทิศเวลาทั้งหมดให้กับการวิเคราะห์ข้อมูลด้วยคอมพิวเตอร์เพียงอย่างเดียว ซึ่งนับเป็นขั้นตอนที่สำคัญมากก่อนที่นักฟิสิกส์เชิงทฤษฎี (ซึ่งโดยมากจะไม่ทราบรายละเอียดของวิธีการทดลอง) จะนำข้อมูลที่ย่อยแล้วไปตรวจสอบแบบจำลองที่ได้จากทฤษฎีเดิมที่มีอยู่ว่าสอดคล้องหรือแตกต่างอย่างไร ซึ่งจะนำไปสู่การปรับปรุงหรือค้นพบทฤษฎีฟิสิกส์ใหม่ในที่สุด
อย่างไรก็ดีกระแสหลักฟิสิกส์เชิงทดลองในปัจจุบันได้เปลี่ยนแนวทางจากการแสวงหาสุดเขตุแดนของทฤษฎีพื้นฐาน มาเป็นการนำเอาทฤษฎีพื้นฐานมาประยุกต์เป็นเทคโนโลยีที่สัมผัสได้ในชีวิตประจำวันมากกว่า ดังจะเห็นได้จากหัวข้อวิจัย Carbon nanotubes เป็นหัวข้อที่ได้รับการวิจัยอย่างกว้างขวาง และมีคนให้ความสนใจมากที่สุด เมื่อประเมินจาก h index [3] ในการทดลองที่มีขนาดย่อมลงมา เช่นในสาขาสสารควบแน่น หรือ นาโนเทคโนโลยี นักทดลองส่วนใหญ่สามารถวิเคราะห์ข้อมูลได้เองว่าเป็นไปตามทฤษฎีหรือไม่ และในบางครั้งก็อาจเสนอแบบจำลองใหม่ได้เองด้วย หน้าที่ของนักฟิสิกส์เชิงทฤษฎีจะเป็นผู้เชื่อมโยงข้อเท็จจริงที่ได้จากในแต่ละการทดลองที่หลากหลายเข้าด้วยกัน และหาแบบจำลองหลักที่สามารถอธิบายการทดลองได้ครอบคลุมกว้างขวางที่สุด ซึ่งรวมถึงการทดลองใหม่ ๆ ที่จะตามมาในอนาคต
- ฟิสิกส์เชิงทฤษฎี (theoretical physics)
คือการสร้างแบบจำลองทางความคิดโดยหลักการทางคณิตศาสตร์ นำไปสู่การสร้างทฤษฎีทางฟิสิกส์ โดยมีการทดลองทดสอบความถูกต้องของทฤษฎีในภายหลัง
นักฟิสิกส์ในยุคปัจจุบัน หาได้ยากมากที่จะมีความชำนาญและเชี่ยวชาญในฟิสิกส์ทั้งสองประเภท (โดยนักฟิสิกส์รุ่นหลังที่มีความสามารถสูงทั้งสองด้าน ที่พอจะยกตัวอย่างได้คือ เอนริโก แฟร์มี) ซึ่งตรงกันข้ามกับนักทฤษฎีเคมีหรือนักทฤษฎีชีววิทยาที่มักจะเก่งด้านทดลองด้วย
สาขาหลักในฟิสิกส์
แก้งานวิจัยฟิสิกส์ปัจจุบันแบ่งย่อยออกเป็นสาขาต่าง ๆ ซึ่งศึกษาธรรมชาติในแง่มุมที่ต่างกัน ฟิสิกส์ของสารควบแน่น เป็นวิชาซึ่งศึกษาคุณสมบัติของสสารในชีวิตประจำวันเช่นของแข็งและของเหลวจากระดับอันตรกิริยาระหว่างอะตอมขึ้นมา และประเมินกันว่าเป็นสาขาที่กว้างขวางที่สุดของฟิสิกส์ปัจจุบัน สาขาฟิสิกส์อะตอม โมเลกุล และทัศนศาสตร์ศึกษาพฤติกรรมของอะตอมและโมเลกุล และรูปแบบที่แสงถูกดูดกลืนและปล่อยออกจากอะตอมและโมเลกุล ฟิสิกส์อนุภาค หรือที่รู้จักกันในชื่อฟิสิกส์พลังงานสูง ซึ่งเกี่ยวข้องกับคุณสมบัติของอนุภาคระดับเล็กกว่าอะตอม เช่นอนุภาคพื้นฐานที่เป็นส่วนประกอบพื้นฐานของสสารทั้งหมด ฟิสิกส์ดาราศาสตร์ประยุกต์ใช้กฎทางฟิสิกส์เพื่ออธิบายปรากฏการณ์ทางดาราศาสตร์ต่าง ๆ ตั้งแต่ดวงอาทิตย์และวัตถุในระบบสุริยะไปจนถึงตัวเอกภพทั้งหมด
สาขาที่เกี่ยวข้อง
แก้มีสาขาวิจัยมากมายที่เกี่ยวข้องกับฟิสิกส์และศาสตร์อื่นรวมกัน ตัวอย่างเช่น ชีวฟิสิกส์ เป็นสาขาที่หลากหลายและเกี่ยวข้องกับการศึกษาบทบาทของหลักการทางฟิสิกส์ในกระบวนการทางชีววิทยา
โสตศาสตร์ - ดาราศาสตร์ - ชีวฟิสิกส์ - ฟิสิกส์เชิงคำนวณ - อิเล็กทรอนิกส์ - วิศวกรรม - ธรณีฟิสิกส์ - วิทยาศาสตร์วัสดุ - คณิตศาสตร์ฟิสิกส์ - ฟิสิกส์การแพทย์ - เคมีฟิสิกส์ - ฟิสิกส์ของคอมพิวเตอร์ - ควอนตัมเคมี - เทคโนโลยีสารสนเทศควอนตัม - พลศาสตร์ของพาหนะ
หัวข้อในฟิสิกส์
แก้ดูเพิ่ม
แก้อ้างอิง และ หมายเหตุ
แก้- ↑ R. P. Feynman, R. B. Leighton, M. Sands (1963) , The Feynman Lectures on Physics, ISBN 0-201-02116-1 Hard-cover. vol. I p. I-2 ฟายน์มันเริ่มด้วยสมมุติฐานเกี่ยวกับอะตอม ในฐานะที่เป็นข้อความที่รวบรัดที่สุดในบรรดาความรู้ทางวิทยาศาสตร์ทั้งหมด: "ถ้า - ในโอกาสที่เกิดหายนะ - ความรู้ทางวิทยาศาสตร์ทั้งหมดถูกทำลายไป และ ประโยคเดียวที่จะเหลือรอดไปยังเด็กรุ่นต่อไป... ประโยคอะไรที่สามารถจะรวมเอาข้อมูลที่มากที่สุดด้วยจำนวนคำที่น้อยที่สุด ผมเชื่อว่ามันคือ ... ประโยคที่ว่า ทุกสิ่งถูกสร้างขึ้นจากอะตอม -- อนุภาคเล็ก ๆ ที่เคลื่อนที่ไปรอบ ๆ โดยไม่หยุดหย่อน ดึงดูดกันและกันเมื่อพวกมันมีระยะห่างกันเล็กน้อย แต่ผลักกันเมื่อถูกบีบอัดให้รวมอยู่ด้วยกัน "
- ↑ The American Heritage® Dictionary of the English Language, Fourth Edition, Copyright © 2006, Houghton Mifflin Company
- ↑ "พจนานุกรม ฉบับราชบัณฑิตยสถาน พ.ศ. ๒๕๔๒". คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2007-11-08. สืบค้นเมื่อ 2007-10-07.
แหล่งข้อมูลอื่น
แก้- สมาคมฟิสิกส์ไทย
- สมาคมดาราศาสตร์ไทย
- ไทยดิกชันนารี ฟิสิกส์ กลุ่มข่าวฟิสิกส์ทั่วไป ใน Usenet
- sci.physics กลุ่มข่าวฟิสิกส์ทั่วไป ใน Usenet
- เว็บบอร์ดวิทยาศาสตร์ไทย หมวดหมู่ ฟิสิกส์ เก็บถาวร 2009-09-14 ที่ เวย์แบ็กแมชชีน
- Usenet Physics FAQ. แบบถาม-ตอบ รวบรวมโดย sci.physics และ กลุ่มข่าวเกี่ยวกับฟิสิกส์อื่น ๆ
- World of Physics. ดิกชันนารีของคำศัพท์ทางฟิสิกส์
- HyperPhysics. แหล่งค้นคว้าข้อมูลทางฟิสิกส์ที่จัดทำในรูปของบัตรความรู้
- The Nobel Prize in Physics 1901-2000 เก็บถาวร 2004-08-03 ที่ เวย์แบ็กแมชชีน. เว็บไซต์ของ the Nobel Prize in Physics.
- Physics.org เก็บถาวร 2004-09-02 ที่ เวย์แบ็กแมชชีน. เว็บท่าที่ดำเนินการโดยInstitute of Physics เก็บถาวร 2019-05-21 ที่ เวย์แบ็กแมชชีน.
- เว็บไซต์ของ the American Institute of Physics เก็บถาวร 2004-10-12 ที่ เวย์แบ็กแมชชีน
- เว็บไซต์ของสมาคมนักเรียนฟิสิกส์อเมริกัน
- Physics Today - แหล่งข้อมูลข่าวและงานวิจัยเกี่ยวกับฟิสิกส์
- เว็บไซต์ของ ปีฟิสิกส์โลก พ.ศ. 2548 (World Year of Physics 2005)
- เว็บไซต์ของสมาคมฟิสิกส์อเมริกา (American Physical Society)
- The Skeptic's Guide to Physics