คณิตศาสตร์
คณิตศาสตร์เป็นศาสตร์ที่ครอบคลุมการค้นคว้าเกี่ยวกับ ปริมาณ โครงสร้าง การเปลี่ยนแปลง และปริภูมิ มีการพิสูจน์ผ่านการให้เหตุผลที่รัดกุม นำไปสู่ความรู้ที่เรียกว่าทฤษฎีบทหรือทฤษฎีทางคณิตศาสตร์ เพื่อใช้งานในศาสตร์เชิงประจักษ์ อาทิ วิทยาศาสตร์และฟิสิกส์ หรือใช้ในคณิตศาสตร์เอง คณิตศาสตร์แบ่งย่อยออกเป็นหลายสาขา ซึ่งรวมไปถึงทฤษฎีจำนวนซึ่งศึกษาจำนวน, พีชคณิตซึ่งศึกษาสูตร สมการและโครงสร้างที่เกี่ยวข้อง, เรขาคณิตซึ่งศึกษารูปร่าง รูปทรงและปริภูมิที่บรรจุรูปร่างรูปทรงต่าง ๆ, คณิตวิเคราะห์ซึ่งศึกษาการเปลี่ยนแปลงแบบต่อเนื่อง และทฤษฎีเซตที่ปัจจุบันใช้เป็นรากฐานของคณิตศาสตร์ทั้งปวง
คณิตศาสตร์มุ่งอธิบายและจัดการวัตถุเชิงนามธรรมที่เรียกว่าวัตถุทางคณิตศาสตร์ ซึ่งอาจจะมีที่มาจากการเปลี่ยมมุมมองสิ่งต่าง ๆ ในธรรมชาติให้เป็นนามธรรม หรือมีที่มาจากวัตถุนามธรรมที่ไม่ได้มีที่มาจากธรรมชาติแต่เกิดจากการกำหนดให้มีสมบัติบางอย่างให้มีขึ้นมา สมบัติเหล่านั้นเรียกว่า สัจพจน์ คณิตศาสตร์ใช้เพียงเหตุผลเท่านั้นเพื่อพิสูจน์สมบัติของวัตถุต่าง ๆ โดยบทพิสูจน์ประกอบไปด้วยข้อความที่เกิดจากการอ้างเหตุผลจากความรู้ก่อนหน้า สิ่งที่นับเป็นความรู้ก่อนหน้าได้แก่ ทฤษฎีบท สัจพจน์ หรือหากเป็นคณิตศาสตร์ที่เกิดจากการสร้างแนวคิดนามธรรมจากตัวอย่างที่มีในธรรมชาติ สามารถถือว่าสมบัติพื้นฐานของธรรมชาติที่ทราบว่าจริงเป็นความรู้ก่อนหน้าได้[1]
คณิตศาสตร์มีความสำคัญอย่างขาดไม่ได้ในศาสตร์ต่าง ๆ อย่าง วิทยาศาสตร์ธรรมชาติ วิศวกรรมศาสตร์ แพทยศาสตร์ การเงิน วิทยาการคอมพิวเตอร์ และสังคมวิทยา ถึงแม้ว่าวิทยาศาสตร์จะใช้จำลองปรากฏการณ์ต่าง ๆ ในธรรมชาติ ความจริงพื้นฐานของคณิตศาสตร์เป็นอิสระจากการทดลองทางวิทยาศาสตร์ใด ๆ สาขาบางสาขาของคณิตศาสตร์ เช่น สถิติศาสตร์และทฤษฎีเกมถูกพัฒนาไปพร้อมกับการประยุกต์ใช้ในศาสตร์อื่น ๆ จึงได้ชื่อว่า คณิตศาสตร์ประยุกต์ ในขณะที่สาขาอื่น ๆ ไม่ได้ถูกสร้างขึ้นเพื่อประยุกต์ใช้ในด้านอื่น จะเรียกว่า คณิตศาสตร์บริสุทธิ์ แต่ในภายหลังอาจค้นพบการประยุกต์ใช้ได้[2][3]
ตามประวัติศาสตร์แล้ว แนวคิดเรื่องการพิสูจน์และความรัดกุมทางคณิตศาสตร์ปรากฏขึ้นครั้งแรกในคณิตศาสตร์กรีกโบราณ โดยเฉพาะอย่างยิ่งในเอเลเมนส์ของยุคลิด[4] คณิตศาสตร์เดิมทีถูกแบ่งออกเป็นสองส่วนใหญ่ ๆ คือเรขาคณิตและเลขคณิต ซึ่งเป็นการดำเนินการกับจำนวนธรรมชาติและเศษส่วน จนกระทั่งในศตวรรษที่ 16 และ 17 พีชคณิตและแคลคูลัสกณิกนันต์เริ่มปรากฏขึ้นเป็นสาขาใหม่ ตั้งแต่นั้นเป็นต้นมา การค้นคว้าใหม่ ๆ ในคณิตศาสตร์และวิทยาศาสตร์ซึ่งเกี่ยวเนื่องกันนำไปสู่การพัฒนาศาสตร์ทั้งสอง[5] เมื่อถึงปลายศตวรรษที่ 19 วิกฤติการณ์รากฐานของคณิตศาสตร์นำไปสู่การจัดระบบของระเบียบวิธีเชิงสัจพจน์[6] ทำให้เกิดสาขาคณิตศาสตร์ใหม่ ๆ จำนวนมากและการประยุกต์ในด้านต่าง ๆ การจัดหมวดหมู่คณิตศาสตร์ในปัจจุบันที่เรียกว่า Mathematics Subject Classification ระบุว่ามีสาขาของคณิตศาสตร์ในชั้นต้นสุดมากกว่า 60 สาขา
สาขาของคณิตศาสตร์
แก้ในเชิงภาพรวมอาจกล่าวได้ว่า คณิตศาสตร์สามารถแบ่งออกเป็นสาขาย่อย ๆ ตามสิ่งที่ศึกษาได้เป็น การศึกษาปริมาณ โครงสร้าง ปริภูมิและความเปลี่ยนแปลง ซึ่งตรงกับสาขาเลขคณิต พีชคณิต เรขาคณิต และคณิตวิเคราะห์ตามลำดับ นอกจากนี้เราอาจพิจารณาคณิตศาสตร์ผ่านความสมพันธ์กับสาขาอื่น ๆ เช่น คณิตตรรกศาสตร์กับตรรกศาสตร์ คณิตศาสตร์ประยุกต์กับวิทยาศาสตร์ ปัจจุบันเราพบว่าหลายสาขาของคณิตศาสตร์ที่ดูผิวเผินจะไม่เกี่ยวข้องกัน กลับสัมพันธ์กันอย่างลึกซึ้ง เช่น กรุปกาลัวส์ พื้นผิวรีมันน์และทฤษฎีจำนวน ซึ่งดูแยกออกจากกันโดยสิ้นเชิงนั้น เกี่ยวเนื่องกันผ่านมุมมองของโปรแกรมแลงแลนดส์
รากฐานและปรัชญา
แก้- หลังจากการพัฒนาทฤษฎีเซตในปลายศตวรรษที่ 19 ทำให้ทฤษฎีเซตกลายเป็นรากฐานของคณิตศาสตร์ที่สำคัญมากที่สุดในรูปแบบหนึ่ง ความพยายามทำความเข้าใจรากฐานนี้ส่งผลให้เกิดการศึกษาคณิตตรรกศาสตร์ และปรัชญาคณิตศาสตร์
คณิตตรรกศาสตร์ | ทฤษฎีเซต | ทฤษฎีแคทิกอรี | ทฤษฎีการคำนวณ |
- ปรัชญาคณิตศาสตร์ - รากฐานของคณิตศาสตร์ - ทฤษฎีเซต - ตรรกศาสตร์สัญลักษณ์ - ทฤษฎีโมเดล - ทฤษฎีแคทิกอรี - ตรรกศาสตร์
คณิตศาสตร์บริสุทธิ์
แก้ทฤษฎีจำนวน
แก้ทฤษฎีจำนวนมีจุดเริ่มต้นจากการดำเนินการกับจำนวนที่เป็นจำนวนธรรมชาติ แล้วต่อมาขยายเป็นจำนวนเต็ม และจำนวนตรรกยะ ทฤษฎีจำนวนเคยถูกเรียกว่า เลขคณิต (arithmetic) แต่ปัจจุบันคำนี้ส่วนใหญ่ใช้สำหรับการคำนวณตัวเลข[7] ทฤษฎีจำนวนสามารถสืบประวัติย้อนกลับไปถึงบาบิโลนโบราณ และเป็นไปได้ว่าปรากฎตั้งแต่สมัยจีนโบราณด้วย นักทฤษฎีจำนวนในยุคแรกที่มีชื่อเสียงสองคนคือ ยุคลิด แห่งกรีกโบราณและ ไดโอแฟนตัส แห่งอเล็กซานเดรีย[8] การวิจัยทฤษฎีจำนวนแบบนามธรรมอย่างในปัจจุบัน มักได้รับการเสนอว่าเป็นผลงานของ ปีแยร์ เดอ แฟร์มา และ เลอ็อนฮาร์ท อ็อยเลอร์ จนมีเกิดผลงานจำนวนมากโดยอาดรีแย็ง-มารี เลอฌ็องดร์ และ คาร์ล ฟรีดริช เกาส์[9]
ข้อปัญหาเกี่ยวกับตัวเลขที่อธิบายได้ง่ายหลายปัญหามีบทพิสูจน์ที่ซับซ้อน และมักเชื่อมโยงคณิตศาสตร์สาขาอื่น ๆ มาใช้พิสูจน์ ตัวอย่างที่ชัดเจนที่สุดคือคือ ทฤษฎีบทสุดท้ายของแฟร์มา ที่กล่าวว่าไม่มีผลเฉลยเป็นจำนวนเต็มบวกของสมการ เมื่อ โดยแฟร์มาตั้งข้อความคาดการณ์นี้ไว้ในปี ค.ศ. 1637 แต่เพิ่งได้รับการพิสูจน์ในปี ค.ศ. 1994 โดยแอนดรูว์ ไวลส์ และใช้เครื่องมือต่าง ๆ ที่รวมถึง ทฤษฎีสกีมในเรขาคณิตพีชคณิต, ทฤษฎีแคทิกอรี และ พีชคณิตเชิงโฮโมโลยี[10] อีกตัวอย่างคือข้อความคาดการณ์ของก็อลท์บัคซึ่งระบุว่าจำนวนเต็มคู่ทุกจำนวนที่มากกว่า 2 เขียนได้ในรูปผลรวมของจำนวนเฉพาะสองตัว ข้อความคาดการณ์นี้ตั้งโดยคริสเตียน ก็อลท์บัค ในปี ค.ศ. 1742 แต่ยังพิสูจน์ไม่ได้แม้นักคณิตศาสตร์จะพยายามอย่างมากเท่าใดก็ตาม[11]
ทฤษฎีจำนวนประกอบด้วยสาขาย่อยหลายสาขา ซึ่งรวมถึง ทฤษฎีจำนวนเชิงวิเคราะห์, ทฤษฎีจำนวนเชิงพีชคณิต, เรขาคณิตของจำนวน, สมการไดโอแฟนไทน์ และ ทฤษฎีอดิศัย[12]
โครงสร้าง
แก้- สาขาเหล่านี้ ศึกษาขนาดและความสมมาตรของจำนวนและวัตถุทางคณิตศาสตร์ต่าง ๆ
ทฤษฎีจำนวน | ทฤษฎีกรุป | ทฤษฎีกราฟ | ทฤษฎีอันดับ |
เรขาคณิต
แก้เรขาคณิตเป็นสาขาหนึ่งที่เก่าแก่ที่สุดของคณิตศาสตร์ เรขาคณิตเริ่มต้นจากข้อเท็จจริงเชิงประจักษ์เกี่ยวกับรูปร่างทั่วไป เช่น เส้นตรง, มุม และ วงกลม ซึ่งพัฒนาขึ้นจากความต้องการนำไปใช้งานทางการสำรวจรังวัดและสถาปัตยกรรม ก่อนจะก็ขยายออกไปประยุกต์ใช้ในสาขาอื่น ๆ อีกมากมาย[13]
แนวคิดอันหนึ่งที่เปลี่ยนแปลงความเข้าใจทางเรขาคณิตของมนุษย์คือแนวคิดเรื่องการพิสูจน์ของขาวกรีกโบราณ ซึ่งเสนอว่าข้อความใด ๆ ที่จะนำไปใช้งานต้องได้รับการพิสูจน์ ตัวอย่างเช่น หากเสนอว่าเส้นตรงสองเส้นในทฤษฎีบททางเรขาคณิตจะมีความยาวเท่ากันเสมอ การวัดด้วยอุปกรณ์ว่าเส้นตรงสองเส้นยาวเท่ากันนั้นไม่เพียงพอ ต้องพิสูจน์ด้วยการใช้เหตุผลจากสิ่งที่ยอมรับหรือเชื่อถือกันมาก่อนหน้านี้ (เรียกว่า ทฤษฎีบท) หรือจากข้อความมูลฐานสองสามข้อ มีข้อความมูลฐานส่วนหนึ่งที่ไม่สามารถพิสูจน์ได้เนื่องจากเป็นสิ่งที่เห็นได้ชัดในตัวเอง (เรียกว่า สมมติฐาน) หรือเป็นส่วนหนึ่งของคำจำกัดความของหัวข้อการศึกษา (สัจพจน์) หลักการนี้เป็นรากฐานของคณิตศาสตร์ทั้งหมด ถูกประยุกต์ใช้เป็นครั้งแรกสำหรับเรขาคณิตโดย ยุคลิด ราว 300 ปีก่อนคริสตกาล ในหนังสือของเขาเรื่อง เอเลเมนส์[14][15]
เรขาคณิตที่ถูกเสนอโดยยุคลิดเรียกว่า เรขาคณิตแบบยุคลิด เป็นการศึกษารูปร่างรูปทรงต่าง ๆ ที่สามารถสร้างขึ้น จากเส้นและวงกลมใน ระนาบแบบยุคลิด ทั้งบนระนาบ (เรขาคณิตบนระนาบ) และในปริภูมิสามมิติ[13]
ความเปลี่ยนแปลง
แก้- หัวข้อเหล่านี้ เกี่ยวข้องกับการวัดความเปลี่ยนแปลงของฟังก์ชันทางคณิตศาสตร์ และความเปลี่ยนแปลงระหว่างจำนวน
แคลคูลัส | แคลคูลัสเวกเตอร์ | การวิเคราะห์เชิงซ้อน | สมการเชิงอนุพันธ์ | ระบบพลวัต | ทฤษฎีความอลวน |
- แคลคูลัส - แคลคูลัสเวกเตอร์ - คณิตวิเคราะห์ - การวิเคราะห์เชิงจริง - การวิเคราะห์เชิงซ้อน - ทฤษฎีเมเชอร์ - การวิเคราะห์เชิงฟังก์ชัน - การวิเคราะห์ฟูร์ริเยร์ - สมการเชิงอนุพันธ์ - ระบบพลวัติ - ทฤษฎีความอลวน - รายการฟังก์ชัน
วิยุตคณิต
แก้- วิยุตคณิต คือแขนงของคณิตศาสตร์ที่สนใจวัตถุที่มีค่าเฉพาะเจาะจงที่แตกต่างกัน
คณิตศาสตร์เชิงการจัด | ทฤษฎีการคำนวณ | วิทยาการเข้ารหัสลับ | ทฤษฎีกราฟ |
คณิตศาสตร์ประยุกต์
แก้- สาขาในคณิตศาสตร์ประยุกต์ ใช้ความรู้ทางคณิตศาสตร์เพื่อแก้ปัญหาในโลกของความเป็นจริง
ประวัติศาสตร์ของคณิตศาสตร์
แก้ที่มาของคำ
แก้คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (สันสกฤต: गणित) ซึ่งแปลว่าที่ถูกนับ ที่ถูกคำนวณ หรือ คณิตศาสตร์[16] คำว่า คณิต มีราก คณฺ (गण्) ซึ่งหมายถึง นับ คำนวณ และคำว่า ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ
ในภาษาอังกฤษคำว่าคณิตศาสตร์ตรงกับคำว่า mathematics ซึ่งมาจากคำภาษากรีกโบราณ μάθημα (máthēma) ซึ่งดั้งเดิมหมายถึง "สิ่งที่ได้เรียน" "สิ่งที่จะได้ทราบ" จึงขยายความหมายออกไปรวมถึงความหมาย "วิทยาศาสตร์, ความรู้, และการเรียน"[17] ในอเมริกาเหนือนิยมย่อคำว่า mathematics ว่า math ส่วนประเทศอื่น ๆ ที่ใช้ภาษาอังกฤษนิยมย่อว่า maths
หนึ่งในสองสำนักคิดหลักย่อยของลัทธิพีทาโกรัสเป็นที่รู้จักกันในชื่อ mathēmatikoi (μαθηματικοί) ซึ่งในสมัยนั้นแปลว่า "ผู้เรียน" มากกว่า "นักคณิตศาสตร์" ในความหมายสมัยใหม่ ลัทธิพีทาโกรัสน่าจะเป็นกลุ่มแรกที่จำกัดการใช้คำนี้เฉพาะการศึกษาเลขคณิตและเรขาคณิตเท่านั้น เมื่อถึงสมัยของอริสโตเติล (384–322 ปีก่อนคริสตกาล) ความหมายที่แคบลงนี้ก็เป็นที่ยอมรับโดยกว้างแล้ว[18]
ในภาษาละตินและภาษาอังกฤษ จนถึงราวปี ค.ศ. 1700 คำว่า คณิตศาสตร์ มักหมายถึง "โหราศาสตร์" (หรือบางครั้งหมายถึง "ดาราศาสตร์") มากกว่า "คณิตศาสตร์" อย่างที่รู้จักกันในปัจจุบัน ความหมายของคำนี้ค่อย ๆ เปลี่ยนไปเป็นความหมายปัจจุบันตั้งแต่ประมาณปี ค.ศ. 1500 ถึงปี ค.ศ. 1800 การเปลี่ยนแปลงนี้ส่งผลให้เกิดการแปลผิดหลายครั้ง ตัวอย่างเช่น คำเตือนของนักบุญออกัสตินว่าคริสเตียนควรระวัง mathematici ซึ่งแปลว่า "นักโหราศาสตร์" บางครั้งก็ถูกแปลผิดว่าเป็นการประณามนักคณิตศาสตร์ไปเสีย[19]
สมัยโบราณ
แก้นอกจากจะรู้จักวิธีการนับวัตถุแล้ว ผู้คนในยุคก่อนประวัติศาสตร์อาจรู้จักวิธีการนับปริมาณนามธรรม เช่น เวลา จากการนับวัน ฤดูกาล หรือปีอีกด้วย[20][21] ไม่ปรากฏหลักฐานของคณิตศาสตร์ที่ซับซ้อนกว่านี้จนกระทั่งประมาณ 3000 ปีก่อนคริสตกาล เมื่อชาวบาบิโลนและชาวอียิปต์โบราณเริ่มใช้เลขคณิต พีชคณิต และเรขาคณิตสำหรับการจัดเก็บภาษีและการคำนวณทางการเงิน สำหรับอาคารและการก่อสร้าง และสำหรับดาราศาสตร์[22] ตำราคณิตศาสตร์ที่เก่าแก่ที่สุดจากเมโสโปเตเมียและอียิปต์ มีอายุระหว่าง 2,000 ถึง 1,800 ปีก่อนคริสตกาล[23] ตำราแรกสุดจากยุคนั้นจำนวนมากเขียนบรรยายถึงสามสิ่งอันดับพีทาโกรัส ฉะนั้นอาจอนุมานได้ว่าทฤษฎีบทพีทาโกรัสน่าจะเป็นแนวคิดทางคณิตศาสตร์ที่เก่าแก่ที่สุดและแพร่หลายที่สุดรองลงมาจากเลขคณิตและเรขาคณิตพื้นฐาน หลักฐานทางโบราณคดีบ่งชี้ว่าเลขคณิตเบื้องต้น อันประกอบไปด้วยการบวก การลบ การคูณ และ การหาร ปรากฏครั้งแรกในคณิตศาสตร์บาบิโลน ชาวบาบิโลนยังมีแนวคิดเรื่องค่าประจำหลัก (place-value system) และใช้เลขฐานหกสิบในการวัดมุมและเวลาซึ่งสืบทอดมาจนถึงทุกวันนี้[24]
เครื่องมือทางคณิตศาสตร์
แก้อ้างอิง
แก้- ↑ Hipólito, Inês Viegas (August 9–15, 2015). "Abstract Cognition and the Nature of Mathematical Proof". ใน Kanzian, Christian; Mitterer, Josef; Neges, Katharina (บ.ก.). Realismus – Relativismus – Konstruktivismus: Beiträge des 38. Internationalen Wittgenstein Symposiums [Realism – Relativism – Constructivism: Contributions of the 38th International Wittgenstein Symposium] (PDF) (ภาษาเยอรมัน และ อังกฤษ). Vol. 23. Kirchberg am Wechsel, Austria: Austrian Ludwig Wittgenstein Society. pp. 132–134. ISSN 1022-3398. OCLC 236026294. เก็บ (PDF)จากแหล่งเดิมเมื่อ November 7, 2022. สืบค้นเมื่อ January 17, 2024. (at ResearchGate เก็บถาวร พฤศจิกายน 5, 2022 ที่ เวย์แบ็กแมชชีน)
- ↑ Peterson 1988, p. 12.
- ↑ Wigner, Eugene (1960). "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". Communications on Pure and Applied Mathematics. 13 (1): 1–14. Bibcode:1960CPAM...13....1W. doi:10.1002/cpa.3160130102. S2CID 6112252. เก็บจากแหล่งเดิมเมื่อ กุมภาพันธ์ 28, 2011.
- ↑ Wise, David. "Eudoxus' Influence on Euclid's Elements with a close look at The Method of Exhaustion". The University of Georgia. เก็บจากแหล่งเดิมเมื่อ June 1, 2019. สืบค้นเมื่อ January 18, 2024.
- ↑ Alexander, Amir (September 2011). "The Skeleton in the Closet: Should Historians of Science Care about the History of Mathematics?". Isis. 102 (3): 475–480. doi:10.1086/661620. ISSN 0021-1753. MR 2884913. PMID 22073771. S2CID 21629993.
- ↑ Kleiner, Israel (December 1991). "Rigor and Proof in Mathematics: A Historical Perspective". Mathematics Magazine. Taylor & Francis, Ltd. 64 (5): 291–314. doi:10.1080/0025570X.1991.11977625. eISSN 1930-0980. ISSN 0025-570X. JSTOR 2690647. LCCN 47003192. MR 1141557. OCLC 1756877. S2CID 7787171.
- ↑ LeVeque, William J. (1977). "Introduction". Fundamentals of Number Theory. Addison-Wesley Publishing Company. pp. 1–30. ISBN 0-201-04287-8. LCCN 76055645. OCLC 3519779. S2CID 118560854.
- ↑ Goldman, Jay R. (1998). "The Founding Fathers". The Queen of Mathematics: A Historically Motivated Guide to Number Theory. Wellesley, MA: A K Peters. pp. 2–3. doi:10.1201/9781439864623. ISBN 1-56881-006-7. LCCN 94020017. OCLC 30437959. S2CID 118934517.
- ↑ Weil, André (1983). Number Theory: An Approach Through History From Hammurapi to Legendre. Birkhäuser Boston. pp. 2–3. doi:10.1007/978-0-8176-4571-7. ISBN 0-8176-3141-0. LCCN 83011857 . OCLC 9576587. S2CID 117789303.
{{cite book}}
: zero width space character ใน|lccn=
ที่ตำแหน่ง 10 (help); ตรวจสอบค่า|lccn=
(help) - ↑ Kleiner, Israel (March 2000). "From Fermat to Wiles: Fermat's Last Theorem Becomes a Theorem". Elemente der Mathematik. 55 (1): 19–37. doi:10.1007/PL00000079. eISSN 1420-8962. ISSN 0013-6018. LCCN 66083524. OCLC 1567783. S2CID 53319514.
- ↑ Wang, Yuan (2002). The Goldbach Conjecture. Series in Pure Mathematics. Vol. 4 (2nd ed.). World Scientific. pp. 1–18. doi:10.1142/5096. ISBN 981-238-159-7. LCCN 2003268597. OCLC 51533750. S2CID 14555830.
- ↑ อ้างอิงผิดพลาด: ป้ายระบุ
<ref>
ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อMSC
- ↑ 13.0 13.1 Straume, Eldar (September 4, 2014). "A Survey of the Development of Geometry up to 1870". arXiv:1409.1140 [math.HO].
- ↑ Hilbert, David (1902). The Foundations of Geometry. Open Court Publishing Company. p. 1. doi:10.1126/science.16.399.307. LCCN 02019303. OCLC 996838. S2CID 238499430. สืบค้นเมื่อ February 6, 2024.
- ↑ Hartshorne, Robin (2000). "Euclid's Geometry". Geometry: Euclid and Beyond. Springer New York. pp. 9–13. ISBN 0-387-98650-2. LCCN 99044789. OCLC 42290188. สืบค้นเมื่อ February 7, 2024.
- ↑ Monier-Williams, Monier (2009-11-26), "A Sanskrit-English Dictionary", A Sanskrit-English Dictionary, Oxford: At the Clarendon Press, p. 343, สืบค้นเมื่อ 2025-02-08
- ↑
- Cresswell 2021, § Mathematics
- Perisho 1965, p. 64
- ↑ Perisho, Margaret W. (Spring 1965). "The Etymology of Mathematical Terms". Pi Mu Epsilon Journal. 4 (2): 62–66. ISSN 0031-952X. JSTOR 24338341. LCCN 58015848. OCLC 1762376.
- ↑ Boas, Ralph P. (1995). "What Augustine Didn't Say About Mathematicians". ใน Alexanderson, Gerald L.; Mugler, Dale H. (บ.ก.). Lion Hunting and Other Mathematical Pursuits: A Collection of Mathematics, Verse, and Stories. Mathematical Association of America. p. 257. ISBN 978-0-88385-323-8. LCCN 94078313. OCLC 633018890.
- ↑ ดูตัวอย่างเช่น Wilder, Raymond L. Evolution of Mathematical Concepts; an Elementary Study. passim.
- ↑ Zaslavsky, Claudia (1999). Africa Counts: Number and Pattern in African Culture. Chicago Review Press. ISBN 978-1-61374-115-3. OCLC 843204342.
- ↑ Kline 1990, Chapter 1.
- ↑ Mesopotamia[ลิงก์เสีย] pg 10. Retrieved June 1, 2024
- ↑ Boyer 1991, "Mesopotamia" pp. 24–27.
- Peterson, Ivars (1988). The Mathematical Tourist: Snapshots of Modern Mathematics. W. H. Freeman and Company. ISBN 0-7167-1953-3. LCCN 87033078. OCLC 17202382.
ดูเพิ่ม
แก้แหล่งข้อมูลอื่น
แก้ภาษาไทย
แก้- คณิตศาสตร์เบื้องต้น เก็บถาวร 2014-11-13 ที่ เวย์แบ็กแมชชีน จากสารานุกรมสำหรับเยาวชน
- แหล่งรวมความรู้ด้านคณิตศาสตร์ เก็บถาวร 2008-12-08 ที่ เวย์แบ็กแมชชีน จากเครือข่ายคอมพิวเตอร์เพื่อโรงเรียนไทย
ภาษาอื่น
แก้- สารานุกรมคณิตศาสตร์ (อังกฤษ)
- The Mathematical Atlas เก็บถาวร 2004-04-03 ที่ เวย์แบ็กแมชชีน - แนะนำสาขาต่าง ๆ ของคณิตศาสตร์สมัยใหม่
- Planet Math เก็บถาวร 2005-06-07 ที่ เวย์แบ็กแมชชีน - สารานุกรมคณิตศาสตร์ เน้นคณิตศาสตร์สมัยใหม่
- MathWorld - สารานุกรมคณิตศาสตร์ เน้นคณิตศาสตร์ดั้งเดิม
- Metamath - อธิบาย และพิสูจน์หลักการทางคณิตศาสตร์ต่าง ๆ อย่างเป็นขั้นเป็นตอน
- Interactive Mathematics Miscellany and Puzzles - บทความ และเกมคณิตศาสตร์ เล่นออนไลน์ได้
ชุมชนไทย
แก้- ศูนย์กลางคณิตศาสตร์ไทย - เว็บไซต์สำหรับผู้มีใจรักคณิตศาสตร์
- เครื่องคิดเลข - เว็บไซต์สำหรับคำนวณเกี่ยวกับคณิตศาสตร์