คณิตศาสตร์

ศาสตร์ชนิดหนึ่ง

คณิตศาสตร์เป็นศาสตร์ที่ครอบคลุมการค้นคว้าเกี่ยวกับ ปริมาณ โครงสร้าง การเปลี่ยนแปลง และปริภูมิ มีการพิสูจน์ผ่านการให้เหตุผลที่รัดกุม นำไปสู่ความรู้ที่เรียกว่าทฤษฎีบทหรือทฤษฎีทางคณิตศาสตร์ เพื่อใช้งานในศาสตร์เชิงประจักษ์ อาทิ วิทยาศาสตร์และฟิสิกส์ หรือใช้ในคณิตศาสตร์เอง คณิตศาสตร์แบ่งย่อยออกเป็นหลายสาขา ซึ่งรวมไปถึงทฤษฎีจำนวนซึ่งศึกษาจำนวน, พีชคณิตซึ่งศึกษาสูตร สมการและโครงสร้างที่เกี่ยวข้อง, เรขาคณิตซึ่งศึกษารูปร่าง รูปทรงและปริภูมิที่บรรจุรูปร่างรูปทรงต่าง ๆ, คณิตวิเคราะห์ซึ่งศึกษาการเปลี่ยนแปลงแบบต่อเนื่อง และทฤษฎีเซตที่ปัจจุบันใช้เป็นรากฐานของคณิตศาสตร์ทั้งปวง

คณิตศาสตร์มุ่งอธิบายและจัดการวัตถุเชิงนามธรรมที่เรียกว่าวัตถุทางคณิตศาสตร์ ซึ่งอาจจะมีที่มาจากการเปลี่ยมมุมมองสิ่งต่าง ๆ ในธรรมชาติให้เป็นนามธรรม หรือมีที่มาจากวัตถุนามธรรมที่ไม่ได้มีที่มาจากธรรมชาติแต่เกิดจากการกำหนดให้มีสมบัติบางอย่างให้มีขึ้นมา สมบัติเหล่านั้นเรียกว่า สัจพจน์ คณิตศาสตร์ใช้เพียงเหตุผลเท่านั้นเพื่อพิสูจน์สมบัติของวัตถุต่าง ๆ โดยบทพิสูจน์ประกอบไปด้วยข้อความที่เกิดจากการอ้างเหตุผลจากความรู้ก่อนหน้า สิ่งที่นับเป็นความรู้ก่อนหน้าได้แก่ ทฤษฎีบท สัจพจน์ หรือหากเป็นคณิตศาสตร์ที่เกิดจากการสร้างแนวคิดนามธรรมจากตัวอย่างที่มีในธรรมชาติ สามารถถือว่าสมบัติพื้นฐานของธรรมชาติที่ทราบว่าจริงเป็นความรู้ก่อนหน้าได้[1]

คณิตศาสตร์มีความสำคัญอย่างขาดไม่ได้ในศาสตร์ต่าง ๆ อย่าง วิทยาศาสตร์ธรรมชาติ วิศวกรรมศาสตร์ แพทยศาสตร์ การเงิน วิทยาการคอมพิวเตอร์ และสังคมวิทยา ถึงแม้ว่าวิทยาศาสตร์จะใช้จำลองปรากฏการณ์ต่าง ๆ ในธรรมชาติ ความจริงพื้นฐานของคณิตศาสตร์เป็นอิสระจากการทดลองทางวิทยาศาสตร์ใด ๆ สาขาบางสาขาของคณิตศาสตร์ เช่น สถิติศาสตร์และทฤษฎีเกมถูกพัฒนาไปพร้อมกับการประยุกต์ใช้ในศาสตร์อื่น ๆ จึงได้ชื่อว่า คณิตศาสตร์ประยุกต์ ในขณะที่สาขาอื่น ๆ ไม่ได้ถูกสร้างขึ้นเพื่อประยุกต์ใช้ในด้านอื่น จะเรียกว่า คณิตศาสตร์บริสุทธิ์ แต่ในภายหลังอาจค้นพบการประยุกต์ใช้ได้[2][3]

ตามประวัติศาสตร์แล้ว แนวคิดเรื่องการพิสูจน์และความรัดกุมทางคณิตศาสตร์ปรากฏขึ้นครั้งแรกในคณิตศาสตร์กรีกโบราณ โดยเฉพาะอย่างยิ่งในเอเลเมนส์ของยุคลิด[4] คณิตศาสตร์เดิมทีถูกแบ่งออกเป็นสองส่วนใหญ่ ๆ คือเรขาคณิตและเลขคณิต ซึ่งเป็นการดำเนินการกับจำนวนธรรมชาติและเศษส่วน จนกระทั่งในศตวรรษที่ 16 และ 17 พีชคณิตและแคลคูลัสกณิกนันต์เริ่มปรากฏขึ้นเป็นสาขาใหม่ ตั้งแต่นั้นเป็นต้นมา การค้นคว้าใหม่ ๆ ในคณิตศาสตร์และวิทยาศาสตร์ซึ่งเกี่ยวเนื่องกันนำไปสู่การพัฒนาศาสตร์ทั้งสอง[5] เมื่อถึงปลายศตวรรษที่ 19 วิกฤติการณ์รากฐานของคณิตศาสตร์นำไปสู่การจัดระบบของระเบียบวิธีเชิงสัจพจน์[6] ทำให้เกิดสาขาคณิตศาสตร์ใหม่ ๆ จำนวนมากและการประยุกต์ในด้านต่าง ๆ การจัดหมวดหมู่คณิตศาสตร์ในปัจจุบันที่เรียกว่า Mathematics Subject Classification ระบุว่ามีสาขาของคณิตศาสตร์ในชั้นต้นสุดมากกว่า 60 สาขา

สาขาของคณิตศาสตร์

แก้

ในเชิงภาพรวมอาจกล่าวได้ว่า คณิตศาสตร์สามารถแบ่งออกเป็นสาขาย่อย ๆ ตามสิ่งที่ศึกษาได้เป็น การศึกษาปริมาณ โครงสร้าง ปริภูมิและความเปลี่ยนแปลง ซึ่งตรงกับสาขาเลขคณิต พีชคณิต เรขาคณิต และคณิตวิเคราะห์ตามลำดับ นอกจากนี้เราอาจพิจารณาคณิตศาสตร์ผ่านความสมพันธ์กับสาขาอื่น ๆ เช่น คณิตตรรกศาสตร์กับตรรกศาสตร์ คณิตศาสตร์ประยุกต์กับวิทยาศาสตร์ ปัจจุบันเราพบว่าหลายสาขาของคณิตศาสตร์ที่ดูผิวเผินจะไม่เกี่ยวข้องกัน กลับสัมพันธ์กันอย่างลึกซึ้ง เช่น กรุปกาลัวส์ พื้นผิวรีมันน์และทฤษฎีจำนวน ซึ่งดูแยกออกจากกันโดยสิ้นเชิงนั้น เกี่ยวเนื่องกันผ่านมุมมองของโปรแกรมแลงแลนดส์

รากฐานและปรัชญา

แก้
หลังจากการพัฒนาทฤษฎีเซตในปลายศตวรรษที่ 19 ทำให้ทฤษฎีเซตกลายเป็นรากฐานของคณิตศาสตร์ที่สำคัญมากที่สุดในรูปแบบหนึ่ง ความพยายามทำความเข้าใจรากฐานนี้ส่งผลให้เกิดการศึกษาคณิตตรรกศาสตร์ และปรัชญาคณิตศาสตร์

ปรัชญาของคณิตศาสตร์

     
 
คณิตตรรกศาสตร์ ทฤษฎีเซต ทฤษฎีแคทิกอรี ทฤษฎีการคำนวณ
ปรัชญาคณิตศาสตร์ - รากฐานของคณิตศาสตร์ - ทฤษฎีเซต - ตรรกศาสตร์สัญลักษณ์ - ทฤษฎีโมเดล - ทฤษฎีแคทิกอรี - ตรรกศาสตร์

คณิตศาสตร์บริสุทธิ์

แก้

ทฤษฎีจำนวน

แก้
 
เส้นเวียนก้นหอยของอูลัมแสดงให้เห็นการกระจายตัวของจำนวนเฉพาะ เส้นทแยงมุมสีเข้มในเห็นในเส้นเวียนก้นหอยเสนอว่ามีความเป็นอิสระระหว่างการเป็นจำนวนเฉพาะและการเป็นค่าของพหุนามกำลังสอง ซึ่งเป็นข้อความคาดการณ์ที่ปัจจุบันเรียกว่าข้อความคาดการณ์ F ของฮาร์ดีและลิตเติลวูด

ทฤษฎีจำนวนมีจุดเริ่มต้นจากการดำเนินการกับจำนวนที่เป็นจำนวนธรรมชาติ   แล้วต่อมาขยายเป็นจำนวนเต็ม   และจำนวนตรรกยะ   ทฤษฎีจำนวนเคยถูกเรียกว่า เลขคณิต (arithmetic) แต่ปัจจุบันคำนี้ส่วนใหญ่ใช้สำหรับการคำนวณตัวเลข[7] ทฤษฎีจำนวนสามารถสืบประวัติย้อนกลับไปถึงบาบิโลนโบราณ และเป็นไปได้ว่าปรากฎตั้งแต่สมัยจีนโบราณด้วย นักทฤษฎีจำนวนในยุคแรกที่มีชื่อเสียงสองคนคือ ยุคลิด แห่งกรีกโบราณและ ไดโอแฟนตัส แห่งอเล็กซานเดรีย[8] การวิจัยทฤษฎีจำนวนแบบนามธรรมอย่างในปัจจุบัน มักได้รับการเสนอว่าเป็นผลงานของ ปีแยร์ เดอ แฟร์มา และ เลอ็อนฮาร์ท อ็อยเลอร์ จนมีเกิดผลงานจำนวนมากโดยอาดรีแย็ง-มารี เลอฌ็องดร์ และ คาร์ล ฟรีดริช เกาส์[9]

ข้อปัญหาเกี่ยวกับตัวเลขที่อธิบายได้ง่ายหลายปัญหามีบทพิสูจน์ที่ซับซ้อน และมักเชื่อมโยงคณิตศาสตร์สาขาอื่น ๆ มาใช้พิสูจน์ ตัวอย่างที่ชัดเจนที่สุดคือคือ ทฤษฎีบทสุดท้ายของแฟร์มา ที่กล่าวว่าไม่มีผลเฉลยเป็นจำนวนเต็มบวกของสมการ   เมื่อ   โดยแฟร์มาตั้งข้อความคาดการณ์นี้ไว้ในปี ค.ศ. 1637 แต่เพิ่งได้รับการพิสูจน์ในปี ค.ศ. 1994 โดยแอนดรูว์ ไวลส์ และใช้เครื่องมือต่าง ๆ ที่รวมถึง ทฤษฎีสกีมในเรขาคณิตพีชคณิต, ทฤษฎีแคทิกอรี และ พีชคณิตเชิงโฮโมโลยี[10] อีกตัวอย่างคือข้อความคาดการณ์ของก็อลท์บัคซึ่งระบุว่าจำนวนเต็มคู่ทุกจำนวนที่มากกว่า 2 เขียนได้ในรูปผลรวมของจำนวนเฉพาะสองตัว ข้อความคาดการณ์นี้ตั้งโดยคริสเตียน ก็อลท์บัค ในปี ค.ศ. 1742 แต่ยังพิสูจน์ไม่ได้แม้นักคณิตศาสตร์จะพยายามอย่างมากเท่าใดก็ตาม[11]

ทฤษฎีจำนวนประกอบด้วยสาขาย่อยหลายสาขา ซึ่งรวมถึง ทฤษฎีจำนวนเชิงวิเคราะห์, ทฤษฎีจำนวนเชิงพีชคณิต, เรขาคณิตของจำนวน, สมการไดโอแฟนไทน์ และ ทฤษฎีอดิศัย[12]

โครงสร้าง

แก้
สาขาเหล่านี้ ศึกษาขนาดและความสมมาตรของจำนวนและวัตถุทางคณิตศาสตร์ต่าง ๆ
       
ทฤษฎีจำนวน ทฤษฎีกรุป ทฤษฎีกราฟ ทฤษฎีอันดับ
พีชคณิตนามธรรม - ทฤษฎีจำนวน - ทฤษฎีกรุป - ทอพอโลยี - พีชคณิตเชิงเส้น - ทฤษฎีแคทิกอรี - ทฤษฎีอันดับ

เรขาคณิต

แก้
 
บนพื้นผิวของทรงกลม เรขาคณิตแบบยุคลิดใช้ได้เป็นการประมาณเฉพาะในบริเวณเล็ก ๆ เท่านั้น เมื่อพิจารณาสเกลที่ใหญ่กว่าจะพบว่าผลรวมมุมภายในของสามเหลี่ยมไม่เท่ากับ 180°

เรขาคณิตเป็นสาขาหนึ่งที่เก่าแก่ที่สุดของคณิตศาสตร์ เรขาคณิตเริ่มต้นจากข้อเท็จจริงเชิงประจักษ์เกี่ยวกับรูปร่างทั่วไป เช่น เส้นตรง, มุม และ วงกลม ซึ่งพัฒนาขึ้นจากความต้องการนำไปใช้งานทางการสำรวจรังวัดและสถาปัตยกรรม ก่อนจะก็ขยายออกไปประยุกต์ใช้ในสาขาอื่น ๆ อีกมากมาย[13]

แนวคิดอันหนึ่งที่เปลี่ยนแปลงความเข้าใจทางเรขาคณิตของมนุษย์คือแนวคิดเรื่องการพิสูจน์ของขาวกรีกโบราณ ซึ่งเสนอว่าข้อความใด ๆ ที่จะนำไปใช้งานต้องได้รับการพิสูจน์ ตัวอย่างเช่น หากเสนอว่าเส้นตรงสองเส้นในทฤษฎีบททางเรขาคณิตจะมีความยาวเท่ากันเสมอ การวัดด้วยอุปกรณ์ว่าเส้นตรงสองเส้นยาวเท่ากันนั้นไม่เพียงพอ ต้องพิสูจน์ด้วยการใช้เหตุผลจากสิ่งที่ยอมรับหรือเชื่อถือกันมาก่อนหน้านี้ (เรียกว่า ทฤษฎีบท) หรือจากข้อความมูลฐานสองสามข้อ มีข้อความมูลฐานส่วนหนึ่งที่ไม่สามารถพิสูจน์ได้เนื่องจากเป็นสิ่งที่เห็นได้ชัดในตัวเอง (เรียกว่า สมมติฐาน) หรือเป็นส่วนหนึ่งของคำจำกัดความของหัวข้อการศึกษา (สัจพจน์) หลักการนี้เป็นรากฐานของคณิตศาสตร์ทั้งหมด ถูกประยุกต์ใช้เป็นครั้งแรกสำหรับเรขาคณิตโดย ยุคลิด ราว 300 ปีก่อนคริสตกาล ในหนังสือของเขาเรื่อง เอเลเมนส์[14][15]

เรขาคณิตที่ถูกเสนอโดยยุคลิดเรียกว่า เรขาคณิตแบบยุคลิด เป็นการศึกษารูปร่างรูปทรงต่าง ๆ ที่สามารถสร้างขึ้น จากเส้นและวงกลมใน ระนาบแบบยุคลิด ทั้งบนระนาบ (เรขาคณิตบนระนาบ) และในปริภูมิสามมิติ[13]

ความเปลี่ยนแปลง

แก้
หัวข้อเหล่านี้ เกี่ยวข้องกับการวัดความเปลี่ยนแปลงของฟังก์ชันทางคณิตศาสตร์ และความเปลี่ยนแปลงระหว่างจำนวน
           
แคลคูลัส แคลคูลัสเวกเตอร์ การวิเคราะห์เชิงซ้อน สมการเชิงอนุพันธ์ ระบบพลวัต ทฤษฎีความอลวน
แคลคูลัส - แคลคูลัสเวกเตอร์ - คณิตวิเคราะห์ - การวิเคราะห์เชิงจริง - การวิเคราะห์เชิงซ้อน - ทฤษฎีเมเชอร์ - การวิเคราะห์เชิงฟังก์ชัน - การวิเคราะห์ฟูร์ริเยร์ - สมการเชิงอนุพันธ์ - ระบบพลวัติ - ทฤษฎีความอลวน - รายการฟังก์ชัน

วิยุตคณิต

แก้
วิยุตคณิต คือแขนงของคณิตศาสตร์ที่สนใจวัตถุที่มีค่าเฉพาะเจาะจงที่แตกต่างกัน
       
คณิตศาสตร์เชิงการจัด ทฤษฎีการคำนวณ วิทยาการเข้ารหัสลับ ทฤษฎีกราฟ
คณิตศาสตร์เชิงการจัด - ทฤษฎีการคำนวณ - วิทยาการเข้ารหัสลับ - ทฤษฎีกราฟ

คณิตศาสตร์ประยุกต์

แก้
สาขาในคณิตศาสตร์ประยุกต์ ใช้ความรู้ทางคณิตศาสตร์เพื่อแก้ปัญหาในโลกของความเป็นจริง
คณิตศาสตร์ฟิสิกส์ - กลศาสตร์ - กลศาสตร์ของไหล - การวิเคราะห์เชิงตัวเลข - การหาค่าเหมาะที่สุด - ความน่าจะเป็น - สถิติศาสตร์ - คณิตศาสตร์การเงิน - ทฤษฎีเกม - คณิตศาสตร์ชีววิทยา - วิทยาการเข้ารหัสลับ - ทฤษฎีข้อมูล - ทฤษฎีระบบควบคุม

ประวัติศาสตร์ของคณิตศาสตร์

แก้

ที่มาของคำ

แก้

คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (สันสกฤต: गणित) ซึ่งแปลว่าที่ถูกนับ ที่ถูกคำนวณ หรือ คณิตศาสตร์[16] คำว่า คณิต มีราก คณฺ (गण्) ซึ่งหมายถึง นับ คำนวณ และคำว่า ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ

ในภาษาอังกฤษคำว่าคณิตศาสตร์ตรงกับคำว่า mathematics ซึ่งมาจากคำภาษากรีกโบราณ μάθημα (máthēma) ซึ่งดั้งเดิมหมายถึง "สิ่งที่ได้เรียน" "สิ่งที่จะได้ทราบ" จึงขยายความหมายออกไปรวมถึงความหมาย "วิทยาศาสตร์, ความรู้, และการเรียน"[17] ในอเมริกาเหนือนิยมย่อคำว่า mathematics ว่า math ส่วนประเทศอื่น ๆ ที่ใช้ภาษาอังกฤษนิยมย่อว่า maths

หนึ่งในสองสำนักคิดหลักย่อยของลัทธิพีทาโกรัสเป็นที่รู้จักกันในชื่อ mathēmatikoi (μαθηματικοί) ซึ่งในสมัยนั้นแปลว่า "ผู้เรียน" มากกว่า "นักคณิตศาสตร์" ในความหมายสมัยใหม่ ลัทธิพีทาโกรัสน่าจะเป็นกลุ่มแรกที่จำกัดการใช้คำนี้เฉพาะการศึกษาเลขคณิตและเรขาคณิตเท่านั้น เมื่อถึงสมัยของอริสโตเติล (384–322 ปีก่อนคริสตกาล) ความหมายที่แคบลงนี้ก็เป็นที่ยอมรับโดยกว้างแล้ว[18]

ในภาษาละตินและภาษาอังกฤษ จนถึงราวปี ค.ศ. 1700 คำว่า คณิตศาสตร์ มักหมายถึง "โหราศาสตร์" (หรือบางครั้งหมายถึง "ดาราศาสตร์") มากกว่า "คณิตศาสตร์" อย่างที่รู้จักกันในปัจจุบัน ความหมายของคำนี้ค่อย ๆ เปลี่ยนไปเป็นความหมายปัจจุบันตั้งแต่ประมาณปี ค.ศ. 1500 ถึงปี ค.ศ. 1800 การเปลี่ยนแปลงนี้ส่งผลให้เกิดการแปลผิดหลายครั้ง ตัวอย่างเช่น คำเตือนของนักบุญออกัสตินว่าคริสเตียนควรระวัง mathematici ซึ่งแปลว่า "นักโหราศาสตร์" บางครั้งก็ถูกแปลผิดว่าเป็นการประณามนักคณิตศาสตร์ไปเสีย[19]

สมัยโบราณ

แก้
 
แผ่นดินเหนียวบรรจุข้อความทางคณิตศาสตร์ของชาวบาบิโลนชื่อว่า Plimpton 322 มีอายุถึง 1800 ปีก่อนคริสตกาล

นอกจากจะรู้จักวิธีการนับวัตถุแล้ว ผู้คนในยุคก่อนประวัติศาสตร์อาจรู้จักวิธีการนับปริมาณนามธรรม เช่น เวลา จากการนับวัน ฤดูกาล หรือปีอีกด้วย[20][21] ไม่ปรากฏหลักฐานของคณิตศาสตร์ที่ซับซ้อนกว่านี้จนกระทั่งประมาณ 3000 ปีก่อนคริสตกาล เมื่อชาวบาบิโลนและชาวอียิปต์โบราณเริ่มใช้เลขคณิต พีชคณิต และเรขาคณิตสำหรับการจัดเก็บภาษีและการคำนวณทางการเงิน สำหรับอาคารและการก่อสร้าง และสำหรับดาราศาสตร์[22] ตำราคณิตศาสตร์ที่เก่าแก่ที่สุดจากเมโสโปเตเมียและอียิปต์ มีอายุระหว่าง 2,000 ถึง 1,800 ปีก่อนคริสตกาล[23] ตำราแรกสุดจากยุคนั้นจำนวนมากเขียนบรรยายถึงสามสิ่งอันดับพีทาโกรัส ฉะนั้นอาจอนุมานได้ว่าทฤษฎีบทพีทาโกรัสน่าจะเป็นแนวคิดทางคณิตศาสตร์ที่เก่าแก่ที่สุดและแพร่หลายที่สุดรองลงมาจากเลขคณิตและเรขาคณิตพื้นฐาน หลักฐานทางโบราณคดีบ่งชี้ว่าเลขคณิตเบื้องต้น อันประกอบไปด้วยการบวก การลบ การคูณ และ การหาร ปรากฏครั้งแรกในคณิตศาสตร์บาบิโลน ชาวบาบิโลนยังมีแนวคิดเรื่องค่าประจำหลัก (place-value system) และใช้เลขฐานหกสิบในการวัดมุมและเวลาซึ่งสืบทอดมาจนถึงทุกวันนี้[24]

เครื่องมือทางคณิตศาสตร์

แก้

อ้างอิง

แก้
  1. Hipólito, Inês Viegas (August 9–15, 2015). "Abstract Cognition and the Nature of Mathematical Proof". ใน Kanzian, Christian; Mitterer, Josef; Neges, Katharina (บ.ก.). Realismus – Relativismus – Konstruktivismus: Beiträge des 38. Internationalen Wittgenstein Symposiums [Realism – Relativism – Constructivism: Contributions of the 38th International Wittgenstein Symposium] (PDF) (ภาษาเยอรมัน และ อังกฤษ). Vol. 23. Kirchberg am Wechsel, Austria: Austrian Ludwig Wittgenstein Society. pp. 132–134. ISSN 1022-3398. OCLC 236026294. เก็บ (PDF)จากแหล่งเดิมเมื่อ November 7, 2022. สืบค้นเมื่อ January 17, 2024. (at ResearchGate   เก็บถาวร พฤศจิกายน 5, 2022 ที่ เวย์แบ็กแมชชีน)
  2. Peterson 1988, p. 12.
  3. Wigner, Eugene (1960). "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". Communications on Pure and Applied Mathematics. 13 (1): 1–14. Bibcode:1960CPAM...13....1W. doi:10.1002/cpa.3160130102. S2CID 6112252. เก็บจากแหล่งเดิมเมื่อ กุมภาพันธ์ 28, 2011.
  4. Wise, David. "Eudoxus' Influence on Euclid's Elements with a close look at The Method of Exhaustion". The University of Georgia. เก็บจากแหล่งเดิมเมื่อ June 1, 2019. สืบค้นเมื่อ January 18, 2024.
  5. Alexander, Amir (September 2011). "The Skeleton in the Closet: Should Historians of Science Care about the History of Mathematics?". Isis. 102 (3): 475–480. doi:10.1086/661620. ISSN 0021-1753. MR 2884913. PMID 22073771. S2CID 21629993.
  6. Kleiner, Israel (December 1991). "Rigor and Proof in Mathematics: A Historical Perspective". Mathematics Magazine. Taylor & Francis, Ltd. 64 (5): 291–314. doi:10.1080/0025570X.1991.11977625. eISSN 1930-0980. ISSN 0025-570X. JSTOR 2690647. LCCN 47003192. MR 1141557. OCLC 1756877. S2CID 7787171.
  7. LeVeque, William J. (1977). "Introduction". Fundamentals of Number Theory. Addison-Wesley Publishing Company. pp. 1–30. ISBN 0-201-04287-8. LCCN 76055645. OCLC 3519779. S2CID 118560854.
  8. Goldman, Jay R. (1998). "The Founding Fathers". The Queen of Mathematics: A Historically Motivated Guide to Number Theory. Wellesley, MA: A K Peters. pp. 2–3. doi:10.1201/9781439864623. ISBN 1-56881-006-7. LCCN 94020017. OCLC 30437959. S2CID 118934517.
  9. Weil, André (1983). Number Theory: An Approach Through History From Hammurapi to Legendre. Birkhäuser Boston. pp. 2–3. doi:10.1007/978-0-8176-4571-7. ISBN 0-8176-3141-0. LCCN ​​ 83011857 ​​. OCLC 9576587. S2CID 117789303. {{cite book}}: zero width space character ใน |lccn= ที่ตำแหน่ง 10 (help); ตรวจสอบค่า |lccn= (help)
  10. Kleiner, Israel (March 2000). "From Fermat to Wiles: Fermat's Last Theorem Becomes a Theorem". Elemente der Mathematik. 55 (1): 19–37. doi:10.1007/PL00000079. eISSN 1420-8962. ISSN 0013-6018. LCCN 66083524. OCLC 1567783. S2CID 53319514.
  11. Wang, Yuan (2002). The Goldbach Conjecture. Series in Pure Mathematics. Vol. 4 (2nd ed.). World Scientific. pp. 1–18. doi:10.1142/5096. ISBN 981-238-159-7. LCCN 2003268597. OCLC 51533750. S2CID 14555830.
  12. อ้างอิงผิดพลาด: ป้ายระบุ <ref> ไม่ถูกต้อง ไม่มีการกำหนดข้อความสำหรับอ้างอิงชื่อ MSC
  13. 13.0 13.1 Straume, Eldar (September 4, 2014). "A Survey of the Development of Geometry up to 1870". arXiv:1409.1140 [math.HO].
  14. Hilbert, David (1902). The Foundations of Geometry. Open Court Publishing Company. p. 1. doi:10.1126/science.16.399.307. LCCN 02019303. OCLC 996838. S2CID 238499430. สืบค้นเมื่อ February 6, 2024.  
  15. Hartshorne, Robin (2000). "Euclid's Geometry". Geometry: Euclid and Beyond. Springer New York. pp. 9–13. ISBN 0-387-98650-2. LCCN 99044789. OCLC 42290188. สืบค้นเมื่อ February 7, 2024.
  16. Monier-Williams, Monier (2009-11-26), "A Sanskrit-English Dictionary", A Sanskrit-English Dictionary, Oxford: At the Clarendon Press, p. 343, สืบค้นเมื่อ 2025-02-08
  17. Perisho, Margaret W. (Spring 1965). "The Etymology of Mathematical Terms". Pi Mu Epsilon Journal. 4 (2): 62–66. ISSN 0031-952X. JSTOR 24338341. LCCN 58015848. OCLC 1762376.
  18. Boas, Ralph P. (1995). "What Augustine Didn't Say About Mathematicians". ใน Alexanderson, Gerald L.; Mugler, Dale H. (บ.ก.). Lion Hunting and Other Mathematical Pursuits: A Collection of Mathematics, Verse, and Stories. Mathematical Association of America. p. 257. ISBN 978-0-88385-323-8. LCCN 94078313. OCLC 633018890.
  19. ดูตัวอย่างเช่น Wilder, Raymond L. Evolution of Mathematical Concepts; an Elementary Study. passim.
  20. Zaslavsky, Claudia (1999). Africa Counts: Number and Pattern in African Culture. Chicago Review Press. ISBN 978-1-61374-115-3. OCLC 843204342.
  21. Kline 1990, Chapter 1.
  22. Mesopotamia[ลิงก์เสีย] pg 10. Retrieved June 1, 2024
  23. Boyer 1991, "Mesopotamia" pp. 24–27.

ดูเพิ่ม

แก้

แหล่งข้อมูลอื่น

แก้

ภาษาไทย

แก้

ภาษาอื่น

แก้

ชุมชนไทย

แก้