ยุคลิด (อังกฤษ: Euclid /ˈjuːklɪd/; กรีกโบราณ: ΕὐκλείδηςEukleídēs; fl. 300 BC) บางครั้งถูกเรียกว่า ยุคลิดแห่งอะเล็กซานเดรีย[1] (อังกฤษ: Euclid of Alexandria, เพื่อแยกเขาออกจากยุคลิดแห่งเมการา) เป็นนักคณิตศาสตร์ชาวกรีกโบราณที่มีชีวิตอยู่ในช่วง 300 ปีก่อนคริสต์ศักราช ผลงานที่มีชื่อเสียงที่สุดของยุคลิดคือหนังสือเอเลเมนส์ (The Elements) ซึ่งเป็นหนังสือรวบรวมทฤษฎีบทในคณิตศาสตร์ (โดยเฉพาะอย่างยิ่งทางเรขาคณิต) และการพิสูจน์โดยวิธีแบบสัจพจน์ ซึ่งได้รับความนิยมอย่างยิ่งจนเป็นตำราเรียนคณิตศาสตร์เล่มสำคัญในอดีตจนถึงศตวรรษที่ 19[2][3] ในหนังสือดังกล่าวยุคลิดพิสูจน์ทฤษฎีบทเกี่ยวกับเรขาคณิตที่ในปัจจุบันเรียกว่า เรขาคณิตแบบยุคลิด จากสัจพจน์พื้นฐานเท่านั้น

ยุคลิด
Scuola di atene 23.jpg
ส่วนหนึ่งจาก สำนักแห่งเอเธนส์ ของราฟาเอล คาดว่าราฟาเอลให้โดนาโต บรามันเตเป็นแบบ
เกิดช่วงกลาง 400 ปีก่อนคริสต์ศักราช
เสียชีวิตช่วงกลาง 300 ปีก่อนคริสต์ศักราช
มีชื่อเสียงจาก
อาชีพทางวิทยาศาสตร์
สาขาคณิตศาสตร์

ประวัติแก้ไข

มีหลักฐานเกี่ยวกับชีวประวัติของยุคลิดน้อยมาก พรอคลัสที่มีชีวิตราว ค.ศ. 450 หรือ 800 ปีหลังยุคลิด เขียนถึงยุคลิดว่าสอนคณิตศาสตร์ที่อะเล็กซานเดรียในรัชสมัยของทอเลมีที่ 1[4] ซึ่งปกครองอียิปต์โบราณในช่วง 323-285 ปีก่อนคริสต์ศักราช หลักฐานอีกอย่างของพรอคลัสคือเรื่องเล่าว่าพระเจ้าทอเลมีที่ 1 พระองค์มีรับสั่งถามยุคลิดว่า ‘มีทางลัดสำหรับการเรียนวิชาเรขาคณิตไหม?’ ยุคลิดทูลตอบว่า ‘ไม่มีลาดพระบาทสำหรับการเรียนเรขาคณิต’ (There is no royal road to geometry.)[5] อย่างไรเสียเรื่องดังกล่าวคล้ายกับเรื่องเล่าเหตุการณ์ระหว่าง เมไนคมัส และ อเล็กซานเดอร์มหาราช[6] ทำให้หลักฐานอ่อนลง

หากเชื่อตามพรอคลัส ยุคลิดได้รับอิทธิพลทางปรัชญาจากเพลโต และจะต้องมีอายุอ่อนกว่ายูโดซัสและตีอิตีตัสเพราะได้เขียน เอเลเมนส์ ที่รวมทฤษฎีบทของยูโดซัสและตีอิตีตัสจำนวนหนึ่งไว้ด้วย แต่ต้องมาก่อนอาร์คิมิดีสเพราะชื่อของยุคลิดปรากฏในงานของอาร์คิมิดีส[7] ในภายหลังมีผู้เสนอและบางส่วนยอมรับว่าชื่อของยุคลิดถูกเพิ่มมาภายหลังในงานของอาร์คิมิดีส[1] แต่ปัจจุบันยังเชื่อกันว่ายุคลิดมีชีวิตอยู่ก่อนอาร์คิมิดีส[1]

ชื่อของยุคลิดถูกล่าวถึงอีกครั้งโดยปัปปุสแห่งอะเล็กซานเดรีย (ประมาณ ค.ศ. 320) โดยกล่าวถึงผ่าน ๆ ว่า อะพอลโลเนียส "ใช้เวลาสักพักร่วมกับลูกศิษย์ของยุคลิดแห่งอะเล็กซานเดรีย ด้วยเหตุนี้เขาจึงได้นิสัยช่างคิดค้นคว้า"[8]

จากการขาดชีวประวัติที่ชัดเจนของยุคลิดในหลักฐานยุคกรีกนั้นผิดปกติ (นักคณิตศาสตร์คนอื่นทั้งก่อนและหลังยุคลิดมีชีวประวัติที่สมบูรณ์กว่านี้) ทำให้มีนักประวัติศาสตร์สันนิษฐานว่ายูคลิดไม่มีตัวตนจริง แต่เป็นกลุ่มนักคณิตศาสตร์ที่อาศัยอยู่ที่อะเล็กซานเดรีย อย่างไรก็ดียังขาดหลักฐานสนับสนุนแนวคิดดังกล่าวและนักประวัติศาสตร์ส่วนใหญ่เชื่อว่ายูคลิดมีตัวตนจริง[9][10]

ผลงานแก้ไข

 
รูปปั้นยุคลิดแห่งอเล็กซานเดรียที่พิพิธภัณฑ์ประวัติศาสตร์ธรรมชาติในมหาวิทยาลัยออกซฟอร์ด

ผลงานที่สำคัญของยุคลิดคือการเขียนตำราทางคณิตศาสตร์และดาราศาสตร์ ผลงานที่ยังคงเหลืออยู่ในปัจจุบัน 5 ชิ้นด้วยกัน คือ

  • Data  เนื้อหาเกี่ยวกับธรรมชาติและผลจากข้อมูลในโจทย์ปัญหาเรขาคณิต คล้ายกับใน เอเลเมนส์ 4 เล่มแรก
  • On Divisions of Figures เกี่ยวข้องกับการแบ่งรูปในระนาบให้ได้ตามสัดส่วนที่กำหนด ประกอบด้วยทฤษฎีบท 36 บท เช่น ทฤษฎีบทที่ 1 ว่าด้วยการสร้างเส้นตรงให้ขนานกับฐานของสามเหลี่ยมและแบ่งสามเหลี่ยมออกเป็นสองส่วนโดยมีพื้นที่เท่ากัน เป็นต้น ต้นฉบับหลงเหลือเฉพาะฉบับแปลเป็นภาษาอาหรับ
  • Phaenomena กล่าวถึงดาราศาสตร์ทรงกลม
  • Optics ว่าด้วยทัศนมิติและการมองเห็น เป็นงานเขียนภาษากรีกเล่มแรกสุดที่ยังหลงเหลือถึงปัจจุบันเกี่ยวกับเรื่องดังกล่าว
  • Elements หรือ เอเลเมนส์  เป็นตำราทางเรขาและคณิตศาสตร์ที่มีชื่อเสียงที่สุดของยุคลิด

นอกจากนี้ยังมีงานของยุคลิดที่ปัจจุบันสูญหายไปแล้ว เช่น Conics ซึ่งภายหลังอะพอลโลเนียสได้เขียนแต่งเติมจนเป็นตำราที่มีชื่อเสียงที่สุดของเขา

เอเลเมนส์ ของยุคลิดแก้ไข

 
หนังสือรวมผลงานที่เหลืออยู่ของยุคลิด (Euclidis quae supersunt omnia, 1703)
ดูเพิ่มเติมที่: เอเลเมนส์

เอเลเมนส์ เป็นผลงานที่มีชื่อเสียงที่สุดของยุคลิด ถึงแม้ว่าหลายทฤษฎีบทใน เอเลเมนส์ จะเป็นที่รู้จักมาก่อนแล้ว แต่ยุคลิดนำเสนอทฤษฎีบทจำนวนมากอย่างรัดกุมและเป็นระบบ ระบบพิสูจน์ทฤษฎีบทใน เอเลเมนส์ ยังเป็นพื้นฐานของคณิตศาสตร์ในปัจจุบัน[11] เอเลเมนส์ มีหลายฉบับ เพราะได้รับการเขียนแต่งเติมโดยนักคณิตศาสตร์หลายท่าน ฉบับที่เป็นที่นิยมที่สุดโดยเธออนแห่งอะเล็กซานเดรีย ถึงแม้พรอคลัสเป็นผู้ระบุว่ายุคลิดเขียน เอเลเมนส์ แต่ไม่มีคำกล่าวถึงยุคลิดในต้นฉบับแรก ๆ ที่ยังหลงเหลืออยู่ของ เอเลเมนส์ เกือบทุกฉบับเขียนว่า "from the edition of Theon" (จากฉบับของเธออน) หรือ "lectures of Theon" (จากคำบรรยายของเธออน)[12] ฉบับของหอสมุดวาติกันเป็นฉบับที่ไม่ได้มาจากฉบับที่แต่งเพิ่มโดยเธออน แต่ก็ไม่มีชื่อผู้แต่งว่าเป็นยุคลิด

หนังสือ เอเลเมนส์ แบ่งออกเป็นหนังสือได้ 13 เล่ม ใน 6 เล่มแรกเป็นผลงานเกี่ยวกับเรขาคณิต เล่ม 7, 8 และ 9 เป็นเรื่องราวเกี่ยวกับทฤษฎีจำนวน เล่ม 10 เป็นเรื่องราวเกี่ยวกับทฤษฎีที่ว่าด้วยจำนวนอตรรกยะ เล่ม 11, 12 และ 13 เกี่ยวข้องกับเรขาคณิตในสามมิติและเรขาคณิตทรงตัน เรขาคณิตในหนังสือ เอเลเมนส์ เป็นเรขาคณิตบนระนาบซึ่งเชื่อกันมานานว่าเป็นเรขาคณิตแบบเดียวที่เป็นไปได้ จนกระทั่งการค้นพบเรขาคณิตนอกแบบยุคลิดในศตวรรษที่ 19

นอกจากเรขาคณิตแล้ว ทฤษฎีจำนวนก็เป็นหัวข้อสำคัญใน เอเลเมนส์ ตัวอย่างทฤษฎีบทที่มี เช่น ทฤษฎีบทที่ว่าจำนวนเฉพาะมีมากมายนับไม่ถ้วน ความสัมพัทธ์ระหว่างจำนวนสมบูรณ์กับจำนวนเฉพาะแมร์แซนน์ บทตั้งของยุคลิดเกี่ยวกับการหาตัวประกอบ และขั้นตอนวิธีแบบยุคลิดที่ใช้หาตัวหารร่วมมากของจำนวนเต็มสองจำนวน

ลักษณะสำคัญของ เอเลเมนส์แก้ไข

1. หนังสือ Elements ถือว่าเป็นต้นแบบของระบบคณิตศาสตร์ในปัจจุบัน กล่าวคือในหนังสือ Elements ยุคลิดได้กำหนดข้อตกลงขึ้น 10 ประการ ยุคลิดเรียกข้อตกลง 5 ประการแรกว่าสัจพจน์ (Axioms) หรือคอมมอนโนชั่น (Common Notions) ซึ่งหมายถึงสิ่งที่เห็นได้จริงโดยไม่ต้องมีการพิสูจน์ในคณิตศาสตร์ทุกแขนง ส่วนข้อตกลง 5 ประการหลังยุคลิดเรียกว่าพอสจูเลต (Postulates) หมายถึงสิ่งที่เห็นได้จริงโดยไม่ต้องพิสูจน์ในทางเรขาคณิต ข้อตกลงดังกล่าวมีดังนี้

A1  สิ่งทั้งหลายที่เท่ากับสิ่งเดียวกัน สิ่งเหล่านั้นย่อมเท่ากัน

A2  สิ่งที่เท่ากัน เมื่อถูกเพิ่มด้วยสิ่งที่เท่ากัน ผลย่อมเท่ากัน

A3  สิ่งที่เท่ากัน เมื่อถูกหักออกด้วยสิ่งที่เท่ากัน ผลย่อมเท่ากัน

A4  สิ่งที่ทุกอย่างร่วมกันย่อมเท่ากัน

A5  ส่วนรวมย่อมใหญ่กว่าส่วนย่อย

P1  ลากเส้นตรงจากจุดหนึ่งไปยังอีกจุดหนึ่งได้

P2  ต่อเส้นตรงที่มีความยาวจำกัดออกไปเรื่อย ๆ

P3  เขียนวงกลมได้เมื่อกำหนดจุดศูนย์กลางและระยะทางใด ๆ

P4  มุมฉากทุกมุมย่อมเท่ากัน

P5  ถ้าเส้นตรงเส้นหนึ่ง ผ่านเส้นตรง 2 เส้น ทำให้มุมภายในที่อยู่ด้านเดียวกันรวมกันน้อยกว่า 2 มุมฉาก แล้วเส้นตรงสองเส้นจะตัดกันทางด้านที่มีมุมรวมกันน้อยกว่า 2 มุมฉาก ถ้าลากเส้นนั้นต่อไปเรื่อยๆ[2]

จากข้อตกลงทั้ง 10 ประการนี้ ยุคลิดสามารถนำไปสร้างทฤษฎีบทได้ 465 ทฤษฎี โดยใช้วิธีการที่เรียกว่า “การสังเคราะห์” ด้วยการนำบทนิยามหรือทฤษฎีที่รู้แล้ว ประกอบกับการให้เหตุผลเชิงตรรกศาสตร์ ไปสร้างข้อสรุปหรือทฤษฎีบทใหม่ที่มีความซับซ้อนมากขึ้น ต่อจากนั้นจึงได้ใช้วิธีการวิเคราะห์พิสูจน์ข้อสรุปหรือทฤษฎีบทเหล่านั้นว่าเป็นจริง

2. ยุคลิดให้นิยามคำศัพท์ทุกคำที่ต้องใช้ในหนังสือ Elements เช่น คำว่าจุด เส้น ระนาบ เป็นต้น

3. การพิสูจน์ที่ปรากฏในหนังสือ Elements ยุคลิดได้พยายามใช้หลักเกณฑ์อย่างเคร่งครัด นอกจากนี้การพิสูจน์ทฤษฎีบทบางบท จัดได้ว่าเป็นวิธีการให้เหตุผลเชิงคณิตศาสตร์ที่สละสลวยและสวยงาม จนถือเป็นแบบฉบับมาจนทุกวันนี้ เช่น การพิสูจน์ว่า จำนวนเฉพาะมีจำนวนไม่จำกัด เป็นต้น[3]

หนังสือ Elements มีทั้งหมด 13 เล่ม ซึ่งมีเนื้อหาส่วนใหญ่เกี่ยวกับเรขาคณิต แต่ก็มีการกล่าวถึงพีชคณิต เรขาคณิตเชิงพีชคณิตเบื้องตน และทฤษฎีจำนวนเบื้องต้น เนื้อหาส่วนใหญ่เป็นผลงานของคนอื่น แต่ทว่ายุคลิดได้นำผลงานของนักปราชญ์คนอื่น ๆ ในสมัยก่อน ๆ มารวบรวมเข้าด้วยกันอย่างมีระบบ และเป็นลำดับเหตุผลต่อเนื่องกัน ซึ่งเนื้อหาของทั้ง 13 เล่ม มีรายละเอียดโดยสังเขปดังนี้

เล่ม 1  ประกอบไปด้วยบทนิยาม 13 นิยาม สัจพจน์ 10 ข้อ ยุคลิดเรียกสัจพจน์ 5 ข้อแรกว่า Postulates และ 5 ข้อหลังเรียกว่า Common notion และทฤษฎีบทอีก 48 ทฤษฎีบท ซึ่งรวมถึงทฤษฎีปีทาโกรัสและบทกลับเอาไว้ด้วย

เล่ม 2  เกี่ยวกับการเปลี่ยนรูป พื้นที่ของรูปต่าง ๆ และพีชคณิตเชิงเรขาคณิตของปีทาโกรัส

เล่ม 3  เป็นทฤษฎีบทเกี่ยวกับวงกลม คอร์ด เส้นสัมผัสวงกลมและการวัดมุมต่าง ๆ

เล่ม 4   เป็นการอภิปรายผลงานของโรงเรียนปีทาโกเรียน เรื่อง การสรางรูปหลายเหลี่ยมด้านเท่าโดยใช้วงเวียนและสันตรง

เล่ม 5 ยุคลิดนำแนวคิดของยูโดซุสมาอธิบายเรื่องทฤษฎีสัดส่วนได้อย่างดีเยี่ยม และนำการประยุกต์ในการหาขนาด ซึ่งแก้ปัญหาที่เกิดขึ้นจากการค้นพบจำนวนอตรรกยะ

เล่ม 6 นำทฤษฎีสัดส่วนของยูโดซุสมาใช้กับเรขาคณิตในระนาบเกี่ยวกับทฤษฎีบทของรูปสามเหลี่ยมคล้าย

เล่ม 7 ทฤษฎีจำนวน: การจำแนกจำนวนเป็นจำนวนคู่ จำนวนคี่ จำนวนเฉพาะ และจำนวนนสมบูรณ์ (Perfect Number) ตัวหารร่วมมาและตัวคูณร่วมน้อย

เล่ม 8 สัดส่วนต่อเนื่อง

เล่ม 9   เกี่ยวกับทฤษฎีจำนวนต่อจากเล่ม 7 และ 8 ทฤษฎีที่มีชื่อเสียงของเล่มนี้คือ จำนวนเฉพาะมีจำนวนไม่จำกัด

เล่ม 10    เกี่ยวกับเรขาคณิตที่เกี่ยวกับจำนวนอตรรกยะ

เล่ม 11    ความรู้เกี่ยวกับเรขาคณิตสามมิติที่สมนัยกับเล่ม 1

เล่ม 12    เรื่องปริมาตรและทฤษฎีบทของยูโดซุสเกี่ยวกับระเบียบวิธีเกษียณ (Method of exhaustion) ซึ่งเป็นพื้นฐานนำไปสู่เรื่องลิมิต (Limit)

เล่ม 13    เกี่ยวกับการสร้างรูปทรงสามมิติ

อ้างอิงแก้ไข

  1. 1.0 1.1 1.2 Bruno, Leonard C. (2003) [1999]. Math and Mathematicians: The History of Math Discoveries Around the World. Baker, Lawrence W. Detroit, Mich.: U X L. pp. 125. ISBN 978-0-7876-3813-9. OCLC 41497065. อ้างอิงผิดพลาด: ป้ายระบุ <ref> ไม่สมเหตุสมผล มีนิยามชื่อ ":0" หลายครั้งด้วยเนื้อหาต่างกัน อ้างอิงผิดพลาด: ป้ายระบุ <ref> ไม่สมเหตุสมผล มีนิยามชื่อ ":0" หลายครั้งด้วยเนื้อหาต่างกัน
  2. Ball, pp. 50–62.
  3. Boyer, pp. 100–19.
  4. Heath 1981, p. 354.
  5. Proclus, p. 57.
  6. Boyer, p. 96.
  7. Heath 1981, p. 354.
  8. Apollonius "spent a very long time with the pupils of Euclid at Alexandria, and it was thus that he acquired such a scientific habit of thought" จาก Heath 1956, p. 2.
  9. O'Connor, John J.; Robertson, Edmund F., "Euclid of Alexandria"
  10. Itard, Jean (1962). Les livres arithmétiques d'Euclide. Paris: Hermann.
  11. Struik p. 51 ("their logical structure has influenced scientific thinking perhaps more than any other text in the world" โครงสร้างตรรกศาสตร์ในงานดังกล่าวมีอิทธิพลต่อการคิดแบบวิทยาศาสตร์ บางทีมีอิทธิพลมากกว่าหนังสือใด ๆ ในโลกนี้ด้วยซ้ำ)
  12. Heath 1981, p. 360.

หนังสืออ่านเพิ่มแก้ไข

  • DeLacy, Estelle Allen (1963). Euclid and Geometry. New York: Franklin Watts.
  • Knorr, Wilbur Richard (1975). The Evolution of the Euclidean Elements: A Study of the Theory of Incommensurable Magnitudes and Its Significance for Early Greek Geometry. Dordrecht, Holland: D. Reidel. ISBN 90-277-0509-7.
  • Mueller, Ian (1981). Philosophy of Mathematics and Deductive Structure in Euclid's Elements. Cambridge, MA: MIT Press. ISBN 0-262-13163-3.
  • Reid, Constance (1963). A Long Way from Euclid. New York: Crowell.
  • Szabó, Árpád (1978). The Beginnings of Greek Mathematics. A.M. Ungar, trans. Dordrecht, Holland: D. Reidel. ISBN 90-277-0819-3.
  • มหาวิทยาลัยศรีนครินทรวิโรฒ บางเขน. ภาควิชาคณิตศาสตร์. (2530). ประวัตินักคณิตศาสตร์. กรุงเทพฯ: สมาคมคณิตศาสตร์แห่งประเทศไทย ในพระบรมราชูปถัมภ์.
  • มหาวิทยาลัยสุโขทัยธรรมาธิราช. สาขาศึกษาศาสตร์. (2543). เอกสารการสอนชุดวิชาคณิตศาสตร์ 4 หน่วยที่ 1–8 = Mathematics 4. พิมพ์ครั้งที่ 7. นนทบุรี: สำนักพิมพ์มหาวิทยาลัยสุโขทัยธรรมาธิราช.
  • สมพร เรืองโชติวิทย์. (2523). รากฐานเรขาคณิต. กรุงเทพฯ: ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ บางเขน.
  • อัควีร์ มัธยมจันทร์. (2544, พฤศจิกายน). “เปิดปูมประวัติคณิตศาสตร์,” อัปเดต. 17(171): 34–37.

แหล่งข้อมูลอื่นแก้ไข