จำนวนจริง
บทความนี้ไม่มีการอ้างอิงจากแหล่งที่มาใด |
ลิงก์ข้ามภาษาในบทความนี้ มีไว้ให้ผู้อ่านและผู้ร่วมแก้ไขบทความศึกษาเพิ่มเติมโดยสะดวก เนื่องจากวิกิพีเดียภาษาไทยยังไม่มีบทความดังกล่าว กระนั้น ควรรีบสร้างเป็นบทความโดยเร็วที่สุด |
ในทางคณิตศาสตร์ จำนวนจริง คือจำนวนที่มีลักษณะเป็นปริมาณที่สามารถแสดงให้เห็นภาพด้วยจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ จำนวนจริงทั้งหมดประกอบด้วยจำนวนตรรกยะ (จำนวนเต็ม เช่น และเศษส่วน เช่น ) และจำนวนอตรรกยะ (เช่น หรือ ) คำว่าจำนวนจริงนั้นบัญญัติขึ้นเพื่อแยกความแตกต่างจากจำนวนจินตภาพ จำนวนจริงสามารถเขียนออกมาได้ในรูปของทศนิยมที่อาจไม่รู้จบ
เซตของจำนวนจริงมีสัญลักษณ์ที่นิยมใช้แทนคือ R หรือ ℝ ซึ่งเซตของจำนวนจริงนี้มีลักษณะเป็นเซตอนันต์ที่นับไม่ได้ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาการวิเคราะห์เชิงจริง (real analysis)
คุณสมบัติและการนำไปใช้
แก้มีหลักเกณฑ์ในการแบ่งจำนวนจริงอยู่หลายเกณฑ์ เช่น จำนวนตรรกยะ หรือ จำนวนอตรรกยะ; จำนวนพีชคณิต (algebraic number) หรือ จำนวนอดิศัย; และ จำนวนบวก จำนวนลบ หรือ ศูนย์
จำนวนจริงแทนปริมาณที่ต่อเนื่องกัน โดยทฤษฎีอาจแทนได้ด้วยทศนิยมไม่รู้จบ และมักจะเขียนในรูปเช่น ซึ่ง จุดสามจุด แทนความหมายว่ายังมีหลักต่อ ๆ ไปอีก ไม่ว่าจะยาวเพียงใดก็ตาม
การวัดในวิทยาศาสตร์กายภาพเกือบทั้งหมดจะเป็นการประมาณค่าสู่จำนวนจริง การเขียนในรูปทศนิยม (ซึ่งเป็นจำนวนตรรกยะที่สามารถเขียนเป็นอัตราส่วนที่มีตัวส่วนชัดเจน) ไม่เพียงแต่ทำให้กระชับ แต่ยังทำให้สามารถเข้าใจถึงจำนวนจริงที่แทนได้ในระดับหนึ่งอีกด้วย
จำนวนจริงจำนวนหนึ่งจะกล่าวได้ว่าเป็นจำนวนที่คำนวณได้ (computable) ถ้ามีขั้นตอนวิธีที่สามารถให้ได้ตัวเลขแทนออกมา เนื่องจากมีจำนวนขั้นตอนวิธีนับได้ (countably infinite) แต่มีจำนวนของจำนวนจริงนับไม่ได้ จำนวนจริงส่วนมากจึงไม่เป็นจำนวนที่คำนวณได้ กลุ่มลัทธิเค้าโครง (constructivists) ยอมรับการมีตัวตนของจำนวนที่คำนวณได้เท่านั้น เซตของจำนวนที่ให้นิยามได้นั้นใหญ่กว่า แต่ก็ยังนับได้
ส่วนมากคอมพิวเตอร์เพียงประมาณค่าของจำนวนจริงเท่านั้น โดยทั่วไปแล้ว คอมพิวเตอร์สามารถแทนค่าจำนวนตรรกยะเพียงกลุ่มหนึ่งได้อย่างแม่นยำโดยใช้ตัวเลขจุดลอยตัวหรือตัวเลขจุดตรึง จำนวนตรรกยะเหล่านี้ใช้เป็นค่าประมาณของจำนวนจริงข้างเคียงอื่น ๆ เลขคณิตกำหนดความเที่ยงได้ (arbitrary-precision arithmetic) เป็นขั้นตอนในการแทนจำนวนตรรกยะโดยจำกัดเพียงหน่วยความจำที่มี แต่โดยทั่วไปจะใช้จำนวนของบิตความละเอียดคงที่กำหนดโดยขนาดของรีจิสเตอร์หน่วยประมวลผล (processor register) นอกเหนือจากจำนวนตรรกยะเหล่านี้ ระบบพีชคณิตคอมพิวเตอร์สามารถจัดการจำนวนอตรรกยะจำนวนมาก (นับได้) อย่างแม่นยำโดยบันทึกรูปแบบเชิงพีชคณิต (เช่น ) แทนค่าประมาณตรรกยะ
นักคณิตศาสตร์ใช้สัญลักษณ์ R (หรือ - อักษร R ในแบบอักษร blackboard bold) แทนเซตของจำนวนจริง สัญกรณ์ Rn แทนปริภูมิ n มิติของจำนวนจริง เช่น สมาชิกตัวหนึ่งจาก R3 ประกอบด้วยจำนวนจริงสามจำนวนและระบุตำแหน่งบนปริภูมิสามมิติ
การสร้างจากจำนวนตรรกยะ
แก้จำนวนจริงสามารถสร้างเป็นส่วนสมบูรณ์ของจำนวนตรรกยะ สำหรับรายละเอียดและการสร้างจำนวนจริงวิธีอื่น ๆ ดูที่ construction of real numbers (การสร้างจำนวนจริง)
วิธีสัจพจน์
แก้ให้ R แทนเซตของจำนวนจริงทั้งหมด แล้ว
- เซต R เป็นฟีลด์ หมายความว่ามีการนิยามการบวกและการคูณ และมีคุณสมบัติตามปกติ
- ฟีลด์ R เป็นฟีลด์อันดับ หมายความว่ามีอันดับเชิงเส้น (total order) ≥ ซึ่งสำหรับทุกจำนวนจริง x y และ z:
- ถ้า x ≥ y แล้ว x + z ≥ y + z
- ถ้า x ≥ 0 และ y ≥ 0 แล้ว xy ≥ 0
- อันดับนั้นมีความบริบูรณ์เดเดคินท์ (Dedekind-complete) กล่าวคือทุกสับเซตที่ไม่ใช่เซตว่าง S ของ R ซึ่งมีขอบเขตบน ใน R มี ขอบเขตบนน้อยสุด ใน R
คุณสมบัติสุดท้ายนี้เป็นตัวแบ่งแยกจำนวนจริงออกจากจำนวนตรรกยะ ตัวอย่างเช่น เซตของจำนวนตรรกยะที่มีกำลังสองน้อยกว่า 2 มีขอบเขตบน (เช่น 1.5) แต่ไม่มีขอบเขตบนน้อยสุดที่เป็นจำนวนตรรกยะ เพราะว่ารากที่สองของ 2 ไม่เป็นจำนวนตรรกยะ
จำนวนจริงนั้นมีคุณสมบัติข้างต้นเป็นเอกลักษณ์ พูดอย่างถูกต้องได้ว่า ถ้ามีฟีลด์อันดับที่มีความบริบูรณ์เดเดคินท์ 2 ฟีลด์ R1 และ R2 จะมีสมสัณฐานฟีลด์ที่เป็นเอกลักษณ์จาก R1 ไปยัง R2 ทำให้เราสามารถมองว่าทั้งคู่เป็นวัตถุเดียวกัน
คุณสมบัติ
แก้ความบริบูรณ์
แก้เหตุผลหลักในการแนะนำจำนวนจริงก็เพราะว่าจำนวนจริงมีลิมิต พูดอย่างเป็นหลักการแล้ว จำนวนจริงมีความบริบูรณ์ โดยนัยของ ปริภูมิอิงระยะทาง หรือ ปริภูมิเอกรูป ซึ่งต่างจากความบริบูรณ์เดเดคินท์เกี่ยวกับอันดับในส่วนที่แล้ว มีความหมายดังต่อไปนี้
ลำดับ (xn) ของจำนวนจริงจะเรียกว่า ลำดับโคชี ถ้าสำหรับ ε > 0 ใด ๆ มีจำนวนเต็ม N (อาจขึ้นอยู่กับ ε) ซึ่งระยะทาง |xn − xm| น้อยกว่า ε โดยที่ n และ m มากกว่า N และอาจกล่าวได้ว่าลำดับเป็นลำดับโคชีโคชีถ้าสมาชิก xn ของมันในที่สุดเข้าใกล้กันเพียงพอ
ลำดับ (xn) ลู่เข้าสู่ลิมิต x ถ้าสำหรับ ε > 0 ใด ๆ มีจำนวนเต็ม N (อาจขึ้นอยู่กับ ε) ซึ่งระยะทาง |xn − x| น้อยกว่า ε โดยที่ n มากกว่า N และอาจกล่าวได้ว่าลำดับมีลิมิต x ถ้าสมาชิกของมันในที่สุดเข้าใกล้ x เพียงพอ
เป็นเรื่องง่ายที่จะเห็นว่าทุกลำดับลู่เข้าเป็นลำดับโคชี ข้อเท็จจริงที่สำคัญหนึ่งเกี่ยวกับจำนวนจริงคือบทกลับของมันก็เป็นจริงเช่นกัน :
- ลำดับโคชีทุกลำดับของจำนวนจริงลู่เข้า
นั่นก็คือ จำนวนจริงนั้นบริบูรณ์
สังเกตว่าจำนวนตรรกยะนั้นไม่บริบูรณ์ เช่น ลำดับ (1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) เป็นลำดับโคชีแต่ไม่ลู่เข้าสู่จำนวนตรรกยะจำนวนใดจำนวนหนึ่ง (ในทางกลับกัน ในระบบจำนวนจริง มันลู่เข้าสู่รากที่สองของ 2)
การมีอยู่ของลิมิตของลำดับโคชีทำให้แคลคูลัสใช้การได้ รวมไปถึงการประยุกต์มากมายของมันด้วย การทดสอบเชิงตัวเลขมาตรฐานเพื่อระบุว่าลำดับนั้นมีลิมิตหรือไม่คือการทดสอบว่ามันเป็นลำดับโคชีหรือไม่ ถ้าเราไม่ทราบลิมิตเหล่านั้นล่วงหน้า
ตัวอย่างเช่น อนุกรมพื้นฐานของฟังก์ชันเลขชี้กำลัง
ลู่เข้าสู่จำนวนจริงจำนวนหนึ่งเพราะว่าสำหรับทุกค่าของ x ผลรวม
สามารถทำให้มีค่าน้อยลงเพียงพอโดยเลือก N ที่มีค่ามากเพียงพอ นี่พิสูจน์ว่าลำดับนี้เป็นลำดับโคชี ดังนั้นเรารู้ว่าลำดับลู่เข้าแม้กระทั่งเราไม่รู้ว่าลิมิตคืออะไร