เศษส่วน
บทความนี้ยังต้องการเพิ่มแหล่งอ้างอิงเพื่อพิสูจน์ความถูกต้อง |
ในทางคณิตศาสตร์ เศษส่วน คือความสัมพันธ์ตามสัดส่วนระหว่างชิ้นส่วนของวัตถุหนึ่งเมื่อเทียบกับวัตถุทั้งหมด เศษส่วนประกอบด้วยตัวเศษ (numerator) หมายถึงจำนวนชิ้นส่วนของวัตถุที่มี และตัวส่วน (denominator) หมายถึงจำนวนชิ้นส่วนทั้งหมดของวัตถุนั้น ตัวอย่างเช่น 34 อ่านว่า เศษสามส่วนสี่ หรือ สามในสี่ หมายความว่า วัตถุสามชิ้นส่วนจากวัตถุทั้งหมดที่แบ่งออกเป็นสี่ส่วนเท่าๆ กัน นอกจากนั้น การแบ่งวัตถุสิ่งหนึ่งออกเป็นศูนย์ส่วนเท่า ๆ กันนั้นเป็นไปไม่ได้ ดังนั้น 0 จึงไม่สามารถเป็นตัวส่วนของเศษส่วนได้ (ดูเพิ่มที่ การหารด้วยศูนย์)
เศษส่วนเป็นตัวอย่างชนิดหนึ่งของอัตราส่วน ซึ่งเศษส่วนแสดงความสัมพันธ์ระหว่างชิ้นส่วนย่อยต่อชิ้นส่วนทั้งหมด ในขณะที่อัตราส่วนพิจารณาจากปริมาณของสองวัตถุที่แตกต่างกัน (ดังนั้น 34 อาจไม่เท่ากับ 3 : 4) และเศษส่วนนั้นอาจเรียกได้ว่าเป็นผลหาร (quotient) ของจำนวน ซึ่งปริมาณที่แท้จริงสามารถคำนวณได้จากการหารตัวเศษด้วยตัวส่วน ตัวอย่างเช่น 34 คือการหารสามด้วยสี่ ได้ปริมาณเท่ากับ 0.75 ในทศนิยม หรือ 75% ในอัตราร้อยละ
การเขียนเศษส่วน ให้เขียนแยกออกจากกันด้วยเครื่องหมายทับหรือ ซอลิดัส (solidus) แล้ววางตัวเศษกับตัวส่วนในแนวเฉียง เช่น ¾ หรือคั่นด้วยเส้นแบ่งตามแนวนอนเรียกว่า วิงคิวลัม (vinculum) เช่น 34 ในบางกรณีอาจพบเศษส่วนที่ไม่มีเครื่องหมายคั่น อาทิ 34 บนป้ายจราจรในบางประเทศ
รูปแบบของเศษส่วน
แก้เศษส่วนสามัญ เศษส่วนแท้ และเศษเกิน
แก้เศษส่วนสามัญ (vulgar/common fraction) คือจำนวนตรรกยะที่สามารถเขียนอยู่ในรูป a/b หรือ ab โดยที่ a และ b ซึ่งเรียกว่า ตัวเศษ และ ตัวส่วน ตามลำดับ เป็นจำนวนเต็มทั้งคู่[1] ตัวเศษแสดงแทนจำนวนของส่วนแบ่ง และตัวส่วนซึ่งไม่เท่ากับศูนย์แสดงแทนการแบ่งส่วนจากทั้งมวล เช่น 13, 34 นั้นเศษส่วนสามัญยังแยกออกเป็นเศษส่วนแท้ (proper fraction) ซึ่งมีค่าของตัวเศษน้อยกว่าตัวส่วน ทำให้ปริมาณของเศษส่วนน้อยกว่า 1 เช่น 79 และเศษเกิน (improper fraction) คือเศษส่วนที่ค่าของตัวเศษมากกว่าหรือเท่ากับตัวส่วน เช่น 55, 97
จำนวนคละ
แก้จำนวนคละ (mixed number) เป็นการนำเสนอเศษส่วนอีกรูปแบบหนึ่ง โดยนำจำนวนเต็มประกอบเข้ากับเศษส่วนแท้ และมีปริมาณเท่ากับสองจำนวนนั้นบวกกัน ตัวอย่างเช่น คุณมีเค้กเต็มถาดสองชิ้น และมีเค้กที่เหลืออยู่อีกสามในสี่ส่วน คุณสามารถเขียนแทนได้ด้วย 234 ซึ่งมีค่าเท่ากับ 2 + 34 จำนวนคละสามารถแปลงไปเป็นเศษเกินและสามารถแปลงกลับได้ตามขั้นตอนดังนี้
การแปลงจำนวนคละไปเป็นเศษเกิน (234)
- คูณจำนวนเต็มเข้ากับตัวส่วนของเศษส่วนแท้ (2 × 4 = 8)
- บวกผลคูณในขั้นแรกด้วยตัวเศษ (8 + 3 = 11)
- นำผลบวกเป็นตัวเศษประกอบกับตัวส่วน เขียนใหม่เป็นเศษเกิน (114)
การแปลงเศษเกินไปเป็นจำนวนคละ (114)
- หารตัวเศษด้วยตัวส่วน ให้เหลือเศษเอาไว้ (11 ÷ 4 = 2 เศษ 3)
- นำผลหารที่ไม่เอาเศษไปเป็นจำนวนเต็ม (2_)
- นำเศษจากการหารเป็นตัวเศษประกอบกับตัวส่วน เขียนเศษส่วนต่อท้ายจำนวนเต็ม (234)
เศษส่วนที่เทียบเท่ากัน
แก้เศษส่วนที่เทียบเท่ากับอีกเศษส่วนหนึ่ง สามารถหาได้จากการคูณหรือการหารทั้งตัวเศษและตัวส่วนด้วยจำนวนที่เท่ากัน (ไม่จำเป็นต้องเป็นจำนวนเต็ม) เนื่องจากจำนวน n ที่คูณหรือหารทั้งตัวเศษและตัวส่วน คือเศษส่วน nn ที่มีค่าเท่ากับ 1 ดังนั้นปริมาณของเศษส่วนจึงไม่เปลี่ยนแปลง ตัวอย่างเช่น กำหนดเศษส่วน 12 เมื่อคูณด้วย 2 ทั้งตัวเศษและตัวส่วนจะได้ผลลัพธ์เป็น 24 ซึ่งยังคงมีปริมาณเท่ากับ 12 จึงกล่าวได้ว่า 24 เทียบเท่ากับ 12 เมื่อลองจินตนาการจะพบว่าสองในสี่ส่วนของเค้กหนึ่งก้อน ไม่แตกต่างจากการแบ่งเค้กครึ่งก้อน
การหารเศษส่วนด้วยจำนวนที่เท่ากัน (ซึ่งจะไม่ใช้ 0 เป็นตัวหาร) เป็นการตัดทอนหรือการลดรูปเศษส่วนให้มีตัวเลขน้อยลง สำหรับเศษส่วนที่ตัวเศษและตัวส่วนไม่มีตัวประกอบร่วมอื่นใดนอกจาก 1 กล่าวคือไม่มีตัวเลขอื่นนอกจาก 1 ที่สามารถหารแล้วได้เศษส่วนสามัญ เรียกว่า เศษส่วนอย่างต่ำ ตัวอย่างเช่น 38 เป็นเศษส่วนอย่างต่ำเพราะมีตัวประกอบร่วมเพียงตัวเดียวคือ 1 ในทางตรงข้าม 39 ไม่เป็นเศษส่วนอย่างต่ำเนื่องจากยังสามารถหารด้วย 3 ได้อีกเป็น 13
นอกจากนั้นการเปรียบเทียบปริมาณของเศษส่วน หากไม่สามารถจินตนาการหรือวาดรูปได้ จำเป็นต้องสร้างเศษส่วนที่เทียบเท่าขึ้นมาใหม่โดยให้มีตัวส่วนเท่ากันก่อนจึงจะสามารถเปรียบเทียบได้ ซึ่งตัวส่วนดังกล่าวสามารถคำนวณได้จากการคูณตัวส่วนทั้งสอง หรือจากตัวคูณร่วมน้อย ตัวอย่างเช่น ถ้าต้องการเปรียบเทียบระหว่าง 34 กับ 1118 ตัวส่วนสำหรับการเปรียบเทียบคือ ครน. ของ 4 กับ 18 มีค่าเท่ากับ 36 ดังนั้นจะได้เศษส่วนที่เทียบเท่าได้แก่ 2736 กับ 2236 ตามลำดับ ทำให้ทราบได้ว่า 34 มีปริมาณมากกว่า 1118
เศษส่วนซ้อน
แก้เศษส่วนซ้อน หรือ เศษซ้อน (complex/compound fraction) คือเศษส่วนที่มีตัวเศษหรือตัวส่วนเป็นเศษส่วนอื่น ตัวอย่างเช่น เป็นเศษส่วนซ้อน ในการลดรูปเศษส่วนซ้อนสามารถทำได้โดยการหารตัวเศษด้วยตัวส่วน เหมือนการหารธรรมดา ดังนั้น จะมีค่าเท่ากับ 12 ÷ 13 = 32 นอกจากนั้นตัวเศษหรือตัวส่วนสามารถเป็นนิพจน์ของเศษส่วนอื่นต่อๆ กันไปได้ อย่างเช่นเศษส่วนต่อเนื่อง (continued fraction)
ส่วนกลับและตัวส่วนที่ไม่ปรากฏ
แก้ส่วนกลับของเศษส่วน (reciprocal/inverse) หมายถึงเศษส่วนอีกจำนวนหนึ่งที่มีตัวเศษและตัวส่วนสลับกัน เช่น ส่วนกลับของ 37 คือ 73 และเนื่องจากจำนวนใดๆ หารด้วย 1 จะได้จำนวนเดิม ดังนั้นจำนวนใดๆ จึงสามารถเขียนให้อยู่ในรูปเศษส่วนโดยมีตัวส่วนเท่ากับ 1 ตัวอย่างเช่น 17 เขียนให้เป็นเศษส่วนได้เป็น 171 ตัวเลข 1 นี้คือตัวส่วนที่ไม่ปรากฏ ดังนั้นจึงสามารถบอกได้ว่าเศษส่วนและจำนวนทุกจำนวน (ยกเว้น 0) สามารถมีส่วนกลับได้เสมอ จากตัวอย่าง ส่วนกลับของ 17 คือ 117
การเปรียบเทียบค่า
แก้สำหรับการเปรียบเทียบค่าของเศษส่วนนั้น หากตัวส่วนเท่ากันสามารถนำตัวเศษมาเปรียบเทียบกันได้เลย ถ้าส่วนไม่เท่ากันก็นำเศษไปคูณกับส่วนของอีกฝั่งและนำไปคูณทั้งสองจำนวนเหมือนกัน
- เพราะ
วิธีหนึ่งที่จะเปรียบเทียบเศษส่วนที่มีตัวส่วนไม่เท่ากันคือการหาตัวส่วนร่วม ในการเปรียบเทียบ กับ ให้แปลงทั้งสองเป็น และ เมื่อได้ว่า เป็นตัวส่วนร่วมแล้ว ตัวเศษ และ ก็สามารถนำมาเปรียบเทียบกันได้
ตัวอย่างเช่น เปรียบเทียบระหว่าง กับ ให้แปลงเป็น กับ ซึ่งสามารถเปรียบเทียบกันได้
อีกกรณีหนึ่งที่เศษส่วนทั้งสองมีตัวเศษเท่ากัน เศษส่วนตัวที่มีตัวส่วนมากกว่าจะมีค่าน้อยกว่าตัวที่มีตัวส่วนน้อยกว่า
การบวกลบคูณหาร
แก้เศษส่วนสามารถบวกลบคูณหารได้ และมีสมบัติการสลับที่ การเปลี่ยนกลุ่ม การกระจาย รวมทั้งข้อยกเว้นของการหารด้วยศูนย์ เหมือนจำนวนทั่วไป
การบวกและการลบเศษส่วน แบ่งเป็นสองกรณีคือ กรณีที่ตัวส่วนเท่ากันและกรณีตัวส่วนไม่เท่ากัน สำหรับกรณีที่ตัวส่วนเท่ากัน เราสามารถนำตัวเศษมาบวกหรือลบกันได้ทันที และได้ผลลัพธ์เป็นเศษส่วนที่ยังคงมีตัวส่วนคงเดิม เช่น
ส่วนกรณีที่ตัวส่วนไม่เท่ากัน จำเป็นต้องหาเศษส่วนเทียบเท่าที่มีตัวส่วนที่เท่ากันก่อน จากการหาผลคูณหรือตัวคูณร่วมน้อยของตัวส่วนทั้งหมด เมื่อตัวส่วนเท่ากันแล้วจึงนำตัวเศษของเศษส่วนที่เทียบเท่ามาบวกหรือลบกันตามปกติ ตัวอย่างเช่น
การคูณเศษส่วนสามารถทำได้ง่าย โดยการนำตัวเศษคูณตัวเศษ ตัวส่วนคูณตัวส่วน ได้ผลลัพธ์ออกมาเป็นเศษส่วนที่เกิดจากผลคูณทั้งสอง อาทิ
สำหรับการหารเศษส่วน ให้ทำตัวหารเป็นส่วนกลับแล้วทำการคูณแทนที่จะเป็นการหาร ดังตัวอย่าง
|
|
|
- * สำหรับการแก้ไขข้อความที่สามารถจัดรูปแบบได้ ซอลิดัสสามารถใช้คู่กับตัวเลขที่เป็นตัวยก (superscript) และตัวห้อย (subscript) เช่น ⁸⁄₉ ส่วนข้อความธรรมดานิยมใช้เครื่องหมายทับ (/) แทน เช่น 8/9