จำนวนจินตภาพ

... (ทำรูปแบบซ้ำ
จากบริเวณสีน้ำเงิน)
i−3 = i
i−2 = −1
i−1 = −i
i0 = 1
i1 = i
i2 = −1
i3 = −i
i4 = 1
i5 = i
i6 = −1
in = im เมื่อ m ≡ n mod 4

ในทางคณิตศาสตร์ จำนวนจินตภาพ (อังกฤษ: imaginary number) เป็นจำนวนเชิงซ้อนที่สามารถเขียนเป็นจำนวนจริงคูณด้วยหน่วยจินตภาพ i[note 1] ซึ่งกำหนดให้ i2 = −1[1][2] รากของจำนวนจินตภาพ bi คือ b2 ตัวอย่างเช่น 5i เป็นจำนวนจินตภาพ และรากของมันคือ −25 ในบทนิยาม ศูนย์เป็นทั้งจำนวนจริงและจำนวนจินตภาพ[3]

ผู้คิดค้นจำนวนจินตภาพคนแรกคือเรอเน เดการ์ตในคริสต์ศตวรรษที่ 17[4] โดยตั้งเป็นคำดูถูกและถือกันว่าไม่มีอยู่จริงหรือไร้ประโยชน์ แนวคิดนี้ได้รับการยอมรับอย่างกว้างขวางหลังจากงานตีพิมพ์ของเลออนฮาร์ด ออยเลอร์ (ในคริสต์ศตวรรษที่ 18) และออกุสแต็ง-ลุยส์ โกชีกับคาร์ล ฟรีดริช เกาส์ (ในช่วงต้นคริสต์ศตวรรษที่ 19)

จำนวนจินตภาพ bi สามารถเพิ่มเป็นจำนวนจริง a เพื่อทำให้เกิดจำนวนเชิงซ้อนในรูป a + bi โดยจำนวนจริง a และ b ถูกเรียกตามลำดับว่า ส่วนจริง กับ ส่วนจินตภาพ ของจำนวนเชิงซ้อน[5][note 2]

นิยามแก้ไข

จำนวนเชิงซ้อนใด ๆ z อาจเขียนได้ดังนี้

 ,

โดยที่   และ   เป็น จำนวนจริง (real number) และ   เป็นหน่วยจินตภาพ (imaginary unit) ซึ่งมีคุณสมบัติตามนิยาม ดังนี้

 

จำนวน   นิยามได้จาก

 

เป็นส่วนจริง (real part) ของจำนวนเชิงซ้อน  , และ  , นิยามได้จาก

 

เป็นส่วนจินตภาพ (imaginary part) แม้ว่าเดิมนั้นเดการ์ตส์จะใช้คำว่า "จำนวนจินตภาพ" เพื่อหมายถึงสิ่งที่ปัจจุบันนี้รู้จักกันว่า "จำนวนเชิงซ้อน" (complex number) แต่คำว่า "จำนวนจินตภาพ" ในปัจจุบัน ก็มักจะหมายถึงจำนวนเชิงซ้อนที่มีส่วนจริงเท่ากับ 0 นั่นคือ จำนวนที่อยู่ในรูป i y ศูนย์ (0) เป็นเพียงจำนวนเดียวที่เป็นทั้งจำนวนจริง และจำนวนจินตภาพ

บทแทรกแก้ไข

 
 
 
...
เป็นต้น

หมายเหตุแก้ไข

  1. ในด้านวิศวกรรมมักใช้เป็นตัว j ถ้า i มีความหมายอื่น (เช่น กระแสไฟฟ้า)
  2. ทั้งส่วนจริงกับส่วนจินตภาพถูกเรียกรวมเป็นจำนวนจริง

อ้างอิงแก้ไข

  1. Uno Ingard, K. (1988). "Chapter 2". Fundamentals of Waves and Oscillations. Cambridge University Press. p. 38. ISBN 0-521-33957-X.
  2. Weisstein, Eric W. "Imaginary Number". mathworld.wolfram.com (ภาษาอังกฤษ). สืบค้นเมื่อ 2020-08-10.
  3. Sinha, K.C. (2008). A Text Book of Mathematics Class XI (Second ed.). Rastogi Publications. p. 11.2. ISBN 978-81-7133-912-9.
  4. Giaquinta, Mariano; Modica, Giuseppe (2004). Mathematical Analysis: Approximation and Discrete Processes (illustrated ed.). Springer Science & Business Media. p. 121. ISBN 978-0-8176-4337-9. Extract of page 121
  5. Aufmann, Richard; Barker, Vernon C.; Nation, Richard (2009). College Algebra: Enhanced Edition (6th ed.). Cengage Learning. p. 66. ISBN 1-4390-4379-5.

บรรณานุกรมแก้ไข

แหล่งข้อมูลอื่นแก้ไข