ระบบพิกัดทรงกลมฟ้า

ในทางดาราศาสตร์ ระบบพิกัดทรงกลมฟ้า (อังกฤษ: Celestial coordinate system) คือระบบสำหรับใช้ในตำแหน่งที่ระบุของวัตถุบนท้องฟ้า เช่น ดาวเทียม ,ดาวเคราะห์ ,ดาวฤกษ์ ,ดาราจักร และอื่น ๆ ระบบพิกัดสามารถระบุได้อยู่ในตำแหน่งปริภูมิสามมิติ หรือเป็นเพียงแค่ทิศทางของวัตถุบนทรงกลมฟ้า ถ้าระยะห่างไม่เป็นที่รู้จักหรือไม่ได้สำคัญ

การวางแนวของพิกัดทางดาราศาสตร์
Ecliptic equator galactic anim.gif
ดาวฤกษ์ ของระบบพิกัดเกี่ยวกับดาราจักร (สีเหลือง), เกี่ยวกับสุริยุปราคา (สีแดง) และแถบเส้นศูนย์สูตร (สีน้ำเงิน) , ฉายบนระบบพิกัดทรงกลม พิกัดสุริยุปราคาและแถบเส้นศูนย์สูตรร่วมกันวิษุวัตเวอร์นาล (สีม่วงแดงเข้ม) เป็นทิศทางหลัก, และพิกัดดาราจักรจะเรียกว่าใจกลางดาราจักร (สีเหลือง) แหล่งกำเนิดของพิกัด ("ศูนย์กลางของทรงกลม") ไม่ชัดเจนมองเห็น ระบบพิกัดทรงกลม สำหรับข้อมูลเพิ่มเติม

ระบบพิกัดถูกนำมาใช้ทั้งในระบบพิกัดทรงกลม หรือระบบพิกัดคาร์ทีเซียน ระบบพิกัดทรงกลมที่คาดการณ์เกี่ยวกับทรงกลมฟ้า มีความคล้ายคลึงกับพิกัดภูมิศาสตร์ นำมาใช้บนพื้นผิวของโลก สิ่งเหล่านี้แตกต่างในการเลือกใช้ของเครื่องบินขั้นพื้นฐาน ซึ่งแบ่งออกจากทรงกลมฟ้าเป็นสองเท่ากับ ทรงกลมไปตามวงกลมใหญ่ ระบบพิกัดมุมฉาก อยู่ในหน่วยที่เหมาะสมเป็นแค่เทียบเท่ากับระบบคาร์ทีเซียนของพิกัดทรงกลม แบบเดียวกับพื้นฐานเครื่องบิน (x,y) และทิศทางหลัก (x-axis) แต่ละระบบพิกัดเป็นชื่อสำหรับการเลือกของเครื่องบินพื้นฐาน

ระบบพิกัดแก้ไข

ตารางต่อไปนี้แสดงระบบพิกัดที่ใช้บ่อยในแวดวงดาราศาสตร์ ระนาบพื้นฐานแบ่งทรงกลมฟ้าออกเป็นสองซีกเท่ากันและมีพิกัดแนวตั้ง 0° คล้ายกับเส้นศูนย์สูตรในระบบพิกัดภูมิศาสตร์ ส่วนขั้วมีพิกัดแนวตั้ง ±90° ทิศทางหลักคือจุดเริ่มต้นของพิกัดแนวนอน แหล่งกำเนิดเป็นจุดศูนย์ระยะทาง "ศูนย์กลางของทรงกลมฟ้า" แม้ว่าความหมายของทรงกลมฟ้าจะคลุมเครือเกี่ยวกับความหมายของจุดกึ่งกลาง

ระบบพิกัด [1] จุดศูนย์กลาง
(Origin)
ระนาบพื้นฐาน
(0º vertical)
ขั้ว พิกัด ทิศทางหลัก
(0º ตามแนวนอน)
แนวตั้ง แนวนอน
แนวนอน
(เรียกอีกอย่างว่า Alt/Az หรือ El/Az)
ผู้สังเกต ขอบฟ้า สุดยอด / ขีดตกต่ำสุด ระดับความสูง (a) หรือ การยกระดับ ทิศทางของดาววัดบนพื้นโลก (A) เหนือ หรือ ใต้ ของจุดของเส้นขอบฟ้า
เส้นศูนย์สูตร ศูนย์กลางของโลก (จากจุดศูนย์กลางของโลก) / ศูนย์กลางของดวงอาทิตย์ (จากจุดศูนย์กลางของดวงอาทิตย์) เส้นศูนย์สูตร ขั้วฟ้า เดคลิเนชัน (δ) ไรต์แอสเซนชัน (α) หรือ มุมของชั่วโมง (h) วิษุวัตเวอร์นาล
สุริยวิถี สุริยวิถี แกนลองจิจูด สุริยวิถีละติจูด (β) สุริยวิถีลองจิจูด (λ)
ดาราจักร ศูนย์กลางของดวงอาทิตย์ ระนาบดาราจักร เสาดาราจักร ละติจูดดาราจักร (b) ลองจิจูดดาราจักร (l) ศูนย์กลางดาราจักร
ซุปเปอร์ดาราจักร ระนาบซุปเปอร์ดาราจักร เสาซุปเปอร์ดาราจักร ละติจูดซุปเปอร์ดาราจักร (SGB) ลองจิจูดซุปเปอร์ดาราจักร (SGL) จุดตัดของระนาบซุปเปอร์ดาราจักรและเครื่องบินดาราจักร

พิกัดการแปลงแก้ไข

การแปลงระหว่างระบบพิกัดต่างๆจะได้รับ[2] ดูที่หมายเหตุก่อนที่จะใช้สมการเหล่านี้

สัญลักษณ์แก้ไข

  • ระบบพิกัดขอบฟ้า
  • ระบบพิกัดศูนย์สูตร
  • ระบบพิกัดสุริยวิถี
  • ระบบพิกัดดาราจักร
  • เบ็ดเตล็ด

มุมชั่วโมง ←→ ไรต์แอสเซนชันแก้ไข

      หรือ      
      หรือ      

ระบบพิกัดศูนย์สูตร ←→ ระบบพิกัดสุริยวิถีแก้ไข

สมการเชิงคลาสสิกที่ได้มาจาก ที่ได้มาจากตรีโกณมิติทรงกลม สำหรับพิกัดระยะยาวถูกแสดงไปทางขวาของวงเล็บ เพียงหารสมการแรกโดยที่สองให้สมการแทนเจนต์ที่สะดวกเห็นได้ทางด้านซ้าย[3] ที่เทียบเท่าเมตริกซ์การหมุนจะได้รับภายใต้ในแต่ละกรณี[4] (ส่วนนี้เป็นเพราะว่าสูญเสียน้ำตาลมีระยะเวลา 180 ° ในขณะที่ cos และ sin มีช่วงเวลา 360 °)

 
 .

 

 .

 

 
 .

 

 .

ระบบพิกัดศูนย์สูตร←→ระบบพิกัดขอบฟ้าแก้ไข

ทราบว่า Azimuth (A)โดยวัดจากจุดทิศใต้[5] หมุนไปทางทิศตะวันตกเชิงบวก จุดจอมฟ้าระยะทางมุมไกลพร้อมวงกลมใหญ่จากสุดยอดไปวัตถุท้องฟ้า เป็นเพียงมุมประกอบของระดับความสูง 90° − a[6]

 

 

 

 

 

 

 

 

 [7]

 

 

ระบบพิกัดศูนย์สูตร←→ระบบพิกัดดาราจักรแก้ไข

สมการเหล่านี้ใช้สำหรับการแปลงพิกัดแถบเส้นศูนย์สูตรเรียกว่า B1950.0 ถ้าพิกัดแถบเส้นศูนย์สูตรจะเรียกไปยังอีกวิษุวัต พวกเขาจะต้องไปที่พัฒนาต่อเนื่องที่ B1950.0 ก่อนที่จะใช้สูตรเหล่านี้

 
 

These equations convert to equatorial coordinates referred to B1950.0.

 
 

ดูเพิ่มแก้ไข

อ้างอิงแก้ไข

  1. Majewski, Steve. "Coordinate Systems". UVa Department of Astronomy. สืบค้นเมื่อ 19 March 2011.
  2. Meeus, Jean (1991). Astronomical Algorithms. Willmann-Bell, Inc., Richmond, VA. ISBN 0-943396-35-2., chap. 12
  3. U.S. Naval Observatory, Nautical Almanac Office; H.M. Nautical Almanac Office (1961). Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac. H.M. Stationery Office, London., sec. 2A
  4. U.S. Naval Observatory, Nautical Almanac Office (1992). P. Kenneth Seidelmann (บ.ก.). Explanatory Supplement to the Astronomical Almanac. University Science Books, Mill Valley, CA. ISBN 0-935702-68-7., section 11.43
  5. Montenbruck, Oliver; Pfleger, Thomas (2000). Astronomy on the Personal Computer. Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-67221-0.,pp 35-37
  6. U.S. Naval Observatory, Nautical Almanac Office; U.K. Hydrographic Office, H.M. Nautical Almanac Office (2008). The Astronomical Almanac for the Year 2010. U.S. Govt. Printing Office. p. M18. ISBN 978-0160820083.
  7. Depending on the azimuth convention in use, the signs of cosA and sinA appear in all four different combinations. Karttunen et al., Taff and Roth define A clockwise from the south. Lang defines it north through east, Smart north through west. Meeus (1991), p. 89: sin δ = sin φ sin a − cos φ cos a cos A; Explanatory Supplement (1961), p. 26: sin δ = sin a sin φ + cos a cos A cos φ.

แหล่งข้อมูลอื่นแก้ไข