กฎของชเต็ฟฟัน–บ็อลทซ์มัน

กฎของชเต็ฟฟัน–บ็อลทซ์มัน (อังกฤษ: Stefan–Boltzmann law) ใช้อุณหภูมิเพื่ออธิบายถึงพลังงานที่วัตถุดำแผ่รังสีออกมา โดยกล่าวว่าพลังงานทั้งหมดซึ่งวัตถุดำแผ่ออกมาต่อหน่วยพื้นที่ผิวที่ความยาวคลื่นทุกค่าต่อหน่วยเวลา (หรือเรียกว่าความเปล่งรังสีของวัตถุดำ) ซึ่งแปรผันตรงกับอุณหภูมิทางอุณหพลศาสตร์ ของวัตถุดำ T กำลังสี่:

กราฟของฟังก์ชันซึ่งแสดงสัดส่วนระหว่างพลังงานทั้งหมดที่ถูกส่งออกมาจากวัตถุดำ กับอุณหภูมิทางอุณหพลศาสตร์ และเส้นสีฟ้าแสดงถึงพลังงานทั้งหมดตามการประมาณของวีน (Wien approximation)

ในที่นี้ σ เป็นค่าคงตัว เรียกว่า ค่าคงตัวของชเต็ฟฟัน–บ็อลทซ์มัน (Stefan–Boltzmann constant) ซึ่งหามาได้จากค่าคงตัวทางฟิสิกส์ค่าอื่นที่รู้อยู่แล้ว ค่าคงตัวนี้มีค่าเท่ากับ

เมื่อ k เป็นค่าคงตัวบ็อลทซ์มัน h เป็นค่าคงตัวของพลังค์ และ c เป็นอัตราเร็วของแสงในสุญญากาศ ความแรงรังสี (radiance) จากองศาการมองที่กำหนด (วัตต์ต่อตารางเมตรต่อสเตอเรเดียน) ถูกกำหนดไว้เป็น

วัตถุที่ไม่ดูดกลืนรังสีตกกระทบทั้งหมด (บางครั้งถูกเรียกว่าวัตถุเทา) ปล่อยพลังงานรวมทั้งหมดน้อยกว่าวัตถุดำและมีคุณลักษณะสภาพเปล่งรังสี (Emissivity) :

การเปล่งรังสี มีมิติ (dimensional analysis) เป็นฟลักซ์พลังงาน (energy flux) (พลังงานต่อหน่วยเวลาต่อหน่วยพื้นที่) และหน่วย SI ของมันคือจูลต่อวินาทีต่อตารางเมตรหรือวัตต์ต่อตารางเมตร หน่วย SI ของอุณหภูมิสัมบูรณ์ T คือเคลวิน สภาพเปล่งรังสีของวัตถุเทาคือ และหากเป็นวัตถุดำที่สมบูรณ์ ส่วนในกรณีทั่วไป (และสมจริงกว่า) นั้นสภาพเปล่งรังสีขึ้นอยู่กับความยาวคลื่น

.

เราสามารถหากำลังทั้งหมดที่ถูกแผ่รังสีออกมาจากวัตถุได้ด้วยการคูณด้วยพื้นที่ผิว :

อนุภาคระดับความยาวคลื่นและเล็กกว่าความยาวคลื่น[1] อภิวัสดุ (metamaterial)[2] และโครงสร้างนาโนอื่น ๆ ไม่อยู่ภายใต้ข้อจำกัดของทัศนศาสตร์เชิงเรขาคณิตหรือรังสี และอาจถูกออกแบบมาให้เกินกว่ากฎของชเต็ฟฟัน-บ็อลทซ์มัน

ประวัติแก้ไข

ในปี ค.ศ. 1864 จอห์น ทินดัลล์ (John Tyndall) นำแสนอการวัดค่าการเปล่งรังสีอินฟราเรดของเส้นใยทองคำขาวและสีของเส้นใยที่สอดคล้องกัน[3] สัดส่วนกำลังสี่ของอุณหภูมิสัมบูรณ์นั้นถูกนิรนัยโดยโยเซ็ฟ ชเต็ฟฟัน (ค.ศ. 1835–1893) ในปี ค.ศ. 1879 บนพื้นฐานของการวัดผลการทดลองของทินดัลล์ในบทความ Über die Beziehung zwischen der Wärmestrahlung und der Temperatur (เกี่ยวกับความสัมพันธ์ระหว่างการแผ่รังสีความร้อนกับอุณหภูมิ) ใน Bulletins from the sessions ของ Vienna Academy of Sciences.[4][5]

ลูทวิช บ็อลทซ์มัน (ค.ศ. 1844–1906) ได้นำเสนอการอนุพัทธ์กฎนี้ผ่านการพิจารณาเชิงทฤษฎีในปี ค.ศ. 1884 โดยนำงานของอาดอลโฟ บาร์โตลี (Adolfo Bartoli) มาใช้[6] ในปี ค.ศ. 1876 บาร์โทลิได้อนุพัทธ์การมีอยู่ของแรงดันรังสี (radiation pressure) จากหลักอุณหพลศาสตร์ และต่อมาบ็อลทซ์มันได้พิจารณาถึงเครื่องจักรความร้อนที่ใช้รังสีแม่เหล็กไฟฟ้าเป็นสิ่งที่ทำงานแทนแก็สอุดมคติ

กฎนี้ถูกยืนยันผ่านการทดลองแทบจะทันที ไฮน์ริช ฟรีดริช เวเบอร์ ได้ชี้ให้เห็นการเบี่ยงเบนในอุณหภูมิที่สูงกว่าแต่ได้มีการยืนยันถึงความแม่นยำเกือบสมบูรณ์ภายในความไม่แน่นอนของการวัดในอุณหภูมิสูงถึง 1535 เคลวินในปี ค.ศ. 1897[7] กฎนี้รวมไปถึงการคาดการณ์เชิงทฤษฎีของค่าคงตัวของชเต็ฟฟัน–บ็อลทซ์มันว่าเป็นฟังก์ชันของอัตราเร็วของแสง ค่าคงตัวบ็อลทซ์มัน และค่าคงตัวของพลังค์เป็นผลพวงโดยตรงของกฎของพลังค์อย่างที่ถูกกำหนดไว้ในปี ค.ศ. 1900

ตามการนิยามหน่วยฐานเอสไอใหม่ พ.ศ. 2562 ซึ่งแก้ไขค่าของค่าคงตัวบ็อลทซ์มัน k ค่าคงตัวของพลังค์ h และอัตราเร็วของแสง c ค่าคงตัวของชเต็ฟฟัน–บ็อลทซ์มันมีค่าอย่างแม่นยำเท่ากับ

 

ตัวอย่างแก้ไข

อุณหภูมิของดวงอาทิตย์แก้ไข

ชเต็ฟฟันยังได้คำนวณอุณหภูมิบนพื้นผิวของดวงอาทิตย์ด้วยกฎของเขา[8] เขาอนุมานจากข้อมูลของ ฌัก-หลุยส์ ซอแร (Jacques-Louis Soret; 1827–1890)[9] ได้ว่าความหนาแน่นของฟลักซ์พลังงานจากดวงอาทิตย์มีค่ามากกว่าความหนาแน่นของฟลักซ์พลังงานจากแผ่นโลหะบาง ๆ ชนิดหนึ่งที่ร้อนถึง 29 เท่า แผ่นบาง (lamella) รูปร่างกลมถูกวางไว้ห่างไประยะหนึ่งซึ่งทำให้มองเห็นอยู่ในมุมเดียวกับดวงอาทิตย์ โซเรต์ประมาณไว้ว่าอุณหภูมิของแผ่นบางคือประมาณ 1900 ถึง 2000°C ชเต็ฟฟันสันนิษฐานว่า ⅓ ของฟลักซ์พลังงานจากดวงอาทิตย์ถูกดูดกลืนโดยบรรยากาศของโลก เขาจึงถือว่าฟลักซ์พลังงานของดวงอาทิตย์ที่ถูกต้องมีค่ามากกว่าค่าของโซเรต์ 3/2 เท่า คือ 29 × 3/2 = 43.5 เท่า.

ค่าของการดูดกลืนของบรรยากาศไม่เคยมีการวัดค่าอย่างแม่นยำจนกระทั่งปี ค.ศ. 1888 และ 1904 ค่าของอุณหภูมิที่ชเต็ฟฟันได้มาคือค่ามัธยฐานของค่าก่อน ๆ คือ 1950 °C และค่าสัมบูรณ์เท่ากับ 2200 K ในเมื่อ 2.574 = 43.5 จึงอนุมานตามกฎได้ว่าอุณหภูมิของดวงอาทิตย์มีค่ามากกว่าอุณหภูมิของแผ่นบางแผ่นนั้น 2.57 เท่า เขาจึงได้ค่าออกมาเท่ากับ 5430 °C หรือ 5700 K (ค่าที่วัดได้ปัจจุบันคือ 5778 K[10]) นี่เป็นการวัดค่าอุณหภูมิของดวงอาทิตย์ที่สมเหตุสมผลเป็นครั้งแรก แต่ก่อนนี้ค่าที่วัดได้มีค่าต่ำสุดตั้งแต่ 1800 °C จนถึงค่าสูงสุด 13,000,000 °C[11] โกลด ปูยเย (Claude Pouillet) (ค.ศ. 1790–1868) คำนวณได้ค่าต่ำสุด 1800 °C ในปี ค.ศ. 1838 โดยใช้กฎของดูลง–เปอตี (Dulong–Petit law)[12]

อุณหภูมิของดาวฤกษ์แก้ไข

อุณหภูมิของดาวฤกษ์ดวงอื่นนอกเหนือจากดวงอาทิตย์สามารถประมาณได้ด้วยวิธีที่คล้ายกันโดยการถือพลังงานที่เปล่งออกมาเสมือนการแผ่รังสีของวัตถุดำ[13] So:

 

โดย L เป็นกำลังส่องสว่าง σ เป็นค่าคงตัวของชเต็ฟฟัน–บ็อลทซ์มัน R เป็นรัศมีของดาว (stellar radius) และ T เป็นอุณหภูมิยังผล เราสามารถใช้สูตรเดียวกันเพื่อคำนวณรัศมีโดยประมาณของดาวฤกษ์แถบลำดับหลัก (main sequence stars) เทียบกับของดวงอาทิตย์:

 

โดย   เป็นรัศมีดวงอาทิตย์   เป็นความสว่างดวงอาทิตย์เป็นต้น

นักดาราศาสตร์สามารถอนุมานหารัศมีของดาวฤกษ์ได้ด้วยกฎของชเต็ฟฟัน–บ็อลทซ์มัน

กฎนี้ปรากฏในอุณหพลศาสตร์ (Black hole thermodynamics) ของหลุมดำในสิ่งที่เรียกว่าการแผ่รังสีฮอว์กิง

อุณหภูมิยังผลของโลกแก้ไข

ในทางคล้ายกันเราสามารถคำนวณอุณหภูมิยังผลของโลก T ด้วยการจับพลังงานที่ได้รับจากดวงอาทิตย์มาเท่ากับพลังงานที่แผ่รังสีจากโลกภายใต้การประมาณของวัตถุดำ (การผลิตพลังงานของโลกเองนั้นน้อยพอที่ไม่จำเป็นต้องสนใจ) กำลังส่องสว่างของดวงอาทิตย์ L ถูกกำหนดไว้เป็น:

 

พลังงานเคลื่อนมาที่โลกผ่านทรงกลมรัศมี a0 หรือระยะทางจากดวงอาทิตย์มาที่โลก ความรับอาบรังสี (irradiance) (พลังที่ได้รับต่อหน่วยพื้นที่) ถูกกำหนดไว้เป็น

 

รัศมีของโลกเท่ากับ R ดังนั้นจึงมีพื้นที่ตัดขวางเท่ากับ   ฟลักซ์การแผ่รังสี (radiant flux) (นั่นคือ พลังแสงอาทิตย์) ที่โลกดูดกลืนถูกกำหนดเป็น:

 

เพราะกฎของชเต็ฟฟัน–บ็อลทซ์มันใช้เลขชี้กำลังที่สี่ จึงมีผลให้การแลกเปลี่ยนเสถียร ฟลักซ์ที่ถูกปล่อยจากโลกจึงมีแนวโน้มเท่ากับฟลักซ์ที่ดูดกลืน และมีสภาพใกล้เคียงกับสภาวะคงที่:

 

T จึงหาได้จาก:

 

โดย T เป็นอุณหภูมิของดวงอาทิตย์ R เป็นรัศมีของดวงอาทิตย์ และ a0 เป็นระยะทางระหว่างโลกกับดวงอาทิตย์ ทั้งหมดนี้ให้ค่าอุณหภูมิยังผลของโลกเท่ากับ 6 °C บนพื้นผิวของโลก เมื่อเราถือว่าโลกไม่มีชั้นบรรยากาศและสามารถดูดกลืนการเปล่งรังสีที่ตกกระทบได้ทั้งหมด

โลกมีอัตราส่วนสะท้อนเท่ากับ 0.3 นั่นหมายความว่า 30% ของรังสีจากดวงอาทิตย์ที่ชนโลกนั้นจะสะท้อนกลับไปในอวกาศ ผลของอัตราส่วนสะท้อนที่มีต่ออุณหภูมิสามารถถูกประมาณได้ว่าพลังงานที่ถูกดูดกลืนลดลงเหลือ 70% แต่โลกก็จะยังแผ่รังสีออกแบบวัตถุดำ (ตามนิยามของอุณหภูมิยังผลซึ่งเป็นสิ่งที่เรากำลังคำนวณ) การประมาณอันนี้ลดอุณหภูมิที่คำนวณลงได้ 0.71/4 เท่าเหลือ 255 K (−18 °C)[14][15]

อุณหภูมิที่คำนวณได้ด้านบนเป็นอุณหภูมิของโลกอย่างที่มองเห็นจากอวกาศ ไม่ใช่อุณหภูมิบนพื้นผิวแต่เป็นค่าเฉลี่ยของวัตถุที่เปล่งรังสีทั้งหมดตั้งแต่บนพื้นผิวจนถึงพื้นที่ระดับสูง อุณหภูมิพื้นผิวเฉลี่ยจริงของโลกคือประมาณ 288 K (15 °C) ซึ่งสูงกว่าอุณหภูมิยังผล 255 K และอุณหภูมิของวัตถุดำ 279 K เนื่องมาจากปรากฏการณ์เรือนกระจก

ด้านบนเราสมมติว่าพื้นผิวทั้งหมดของโลกมีอุณหภูมิเดียวกัน เราจึงถามได้อีกว่าอุณหภูมิของพื้นผิววัตถุดำบนโลกจะมีอุณหภูมิเท่าใดหากเราสมมติว่าผิวนั้นอยู่ในสภาวะสมดุลกับแสงอาทิตย์ที่ตกกระทบ แต่นี่ขึ้นอยู่กับองศาของแสงอาทิตย์และปริมาณบรรยากาศที่แสงส่องผ่าน เมื่อดวงอาทิตย์อยู่เหนือศีรษะและพื้นผิวนอนราบ ความรับอาบรังสีสามารถสูงถึง 1120 W/m2[16] และเราได้อุณหภูมิจากกฎของชเต็ฟฟัน–บ็อลทซ์มันเท่ากับ

 

หรือ 102 °C (ด้านบนชั้นบรรยากาศอุณหภูมิจะสูงขึ้นเป็น: 394 K.) เราสามารถมองพื้นผิวของโลกได้ว่า "พยายาม" กลับเข้าสู่สภาวะสมดุลในช่วงเวลากลางวันแต่ถูกทำให้เย็นลงโดยบรรยากาศ และ "พยายาม" กลับเข้าสู่สภาวะสมดุลกับแสงดาวและแสงจันทร์ในช่วงเวลากลางคืนแต่ถูกทำให้อุ่นโดยบรรยากาศ

ต้นกำเนิดแก้ไข

การอนุพัทธ์ความหนาแน่นของพลังงานโดยทางอุณหพลศาสตร์แก้ไข

ข้อเท็จจริงว่าความหนาแน่นของพลังงาน (energy density) ภายในกล่องที่บรรจุรังสีแปรผันกับ   นั้นสามารถหามาได้ด้วยอุณหพลศาสตร์[17][18] การอนุพัทธ์นี้ใช้ความสัมพันธ์ระหว่างแรงดันรังสี p กับความหนาแน่นของพลังงานภายใน (internal energy)   ซึ่งสามารถแสดงได้ด้วยรูปแบบของเทนเซอร์ความเค้น-พลังงานแม่เหล็กไฟฟ้า (electromagnetic stress–energy tensor) ความสัมพันธ์นี้คือ:

 

จากความสัมพันธ์ทางอุณหพลศาสตร์มูลฐาน (fundamental thermodynamic relation)

 

หลังจากหารด้วย   และตรึงค่า   ไว้ เราจึงได้นิพจน์ดังต่อไปนี้:

 

สมการสุดท้ายได้มาจากความสัมพันธ์ของแมกซ์เวลล์:

 

จากนิยามของความหนาแน่นของพลังงาน เราจึงได้

 

โดยความหนาแน่นของพลังงานของการแผ่รังสีขึ้นอยู่กับอุณหภูมิเท่านั้น ดังนั้น

 

แล้วสมการนี้

 

เมื่อแทน   และ   ด้วยนิพจน์ซึ่งสมมูลของแต่ละอันลงไปในสมการ ก็จะเขียนใหม่ได้เป็น

 

ในเมื่ออนุพันธ์ย่อย   สามารถแสดงออกเป็นความสัมพันธ์ระหว่าง   และ   เพียงสองอย่างเท่านั้น (ถ้าย้ายข้างไปอยู่อีกฝั่งของสมการ) เราสามารถเปลี่ยนอนุพันธ์ย่อยนี้เป็นอนุพันธ์แบบธรรมดา และหลังจากแยกผลต่างเชิงอนุพันธ์ออกจากกันแล้วสมการจะกลายเป็น

 

ซึ่งนำไปสู่   โดย   เป็นค่าคงตัวของปริพันธ์ค่าหนึ่ง

การอนุพัทธ์จากกฎของพลังค์แก้ไข

 
การอนุพัทธ์กฎของชเต็ฟฟัน–บ็อลทซ์มันด้วยกฎของพลังค์

เราสามารถอนุพัทธ์กฎนี้ได้ด้วยการพิจารณาพื้นผิวของวัตถุดำแบนราบราบขนาดเล็กซึ่งแผ่รังสีออกมาเป็นครึ่งทรงกลม และจะใช้ระบบพิกัดทรงกลมในการอนุพัทธ์ โดย θ เป็นมุมเชิงขั้ว (zenith angle) และ φ เป็นมุมทิศ (azimuth angle) พื้นผิวของวัตถุดำแบนราบอยู่บนระนาบ xy ที่ θ = π/2.

ความเข้มของแสงที่เปล่งออกมาจากพื้นผิววัตถุดำถูกกำหนดโดยกฎของพลังค์เป็น:

 
โดย

  คือปริมาณของกำลังที่แผ่ออกมาโดยพื้นที่ผิว A ผ่านมุมตัน ในช่วงความถี่ระหว่าง ν และ ν + .

กฎของชเต็ฟฟัน–บ็อลทซ์มันกำหนดกำลังที่เปล่งออกมาต่อหน่วยพื้นที่ของวัตถุเป็น

 

โคไซน์มีอยู่ในสมการเพราะวัตถุดำเป็นแหล่งกำเนิดรังสีแบบลัมแบร์ท (นั่นคือ ปฏิบัติตามกฎโคไซน์ของลัมแบร์ท) หมายความว่าความเข้มที่ตรวจวัดได้ตลอดทรงกลมนั้นจะเท่ากับความเข้มจริงคูณด้วยโคไซน์ของมุมเชิงขั้ว เราจำเป็นเป็นต้องปริพันธ์   ตลอดครึ่งทรงกลม และปริพันธ์   จาก 0 ถึง ∞ เพื่ออนุพัทธ์หากฎของชเต็ฟฟันบ็อลทซ์มัน

 

แล้วใส่ค่า I ลงไป:

 

เราต้องใช้การแทนที่เพื่อแก้ปริพันธ์นี้

 

และได้:

 

ปริพันธ์ฝั่งขวาเป็นแบบมาตรฐานซึ่งมีชื่อเรียกหลายชื่อ มันเป็นกรณีเฉพาะของปริพันธ์โพส-ไอน์สไตน์ (Bose-Einstein integral), โพลีลอการิทึม (Polylogarithm) หรือฟังก์ชันซีตาของรีมัน   ค่าของปริพันธ์เท่ากับ   ทำให้ได้ผลลัพธ์สำหรับพื้นผิววัตถุดำเป็น:

 

สุดท้าย แม้การพิสูจน์นี้เริ่มจากการพิจารณาพื้นผิวแบนราบขนาดเล็กเท่านั้น แต่เราสามารถประมาณพื้นผิวที่อนุพันธ์ได้ (Differentiable manifold) ทุกผิวด้วยพื้นผิวแบนราบขนาดเล็กได้ พลังงานทั้งหมดที่แผ่ออกมาคือผลรวมของพลังงานที่แผ่ออกมาจากพื้นผิวทั้งหมดตราบใดที่ลักษณะทางเรขาคณิตของพื้นผิวนั้นไม่ทำให้วัตถุดำต้องดูดกลืนรังสีที่ตัวเองเปล่งออกมากลับเข้าไป และพื้นที่ผิวทั้งหมดคือผลรวมของพื้นที่ของพื้นผิวแต่ละผิว ดังนั้นกฎนี้จึงเป็นจริงสำหรับวัตถุดำแบบคอนเวกซ์หรือนูน (convex set) ทุกวัตถุตราบใดที่พื้นผิวมีอุณหภูมิเท่ากันตลอดทั้งผิว กฎนี้สามารถขยายไปใช้กับวัตถุที่ไม่นูนได้เพียงใช้ข้อเท็จจริงที่ว่าเปลือกหุ้มคอนเวกซ์ (convex hull) ของวัตถุดำนั้นแผ่รังสีเสมือนตัวมันเองเป็นวัตถุดำ

ความหนาแน่นของพลังงานแก้ไข

เราสามารถคำนวณความหนาแน่นของพลังงานรวม U ได้ในลักษณะคล้ายกัน ต่างกันเพียงคราวนี้เราจะปริพันธ์ตลอดทั้งทรงกลม และไม่มีโคไซน์ และเราจะหารฟลักซ์พลังงาน (U c) ด้วยอัตราเร็ว c เพื่อให้ค่าความหนาแน่นของพลังงาน U:

 

ดังนั้น   ถูกแทนที่ด้วย  , ซึ่งให้ตัวประกอบเพิ่มค่าเท่ากับ 4.

ดังนั้น จากทั้งหมดได้:

 

ดูเพิ่มแก้ไข

อ้างอิงแก้ไข

  1. Bohren, Craig F.; Huffman, Donald R. (1998). Absorption and scattering of light by small particles. Wiley. pp. 123–126. ISBN 978-0-471-29340-8.
  2. Narimanov, Evgenii E.; Smolyaninov, Igor I. (2012). "Beyond Stefan–Boltzmann Law: Thermal Hyper-Conductivity". Conference on Lasers and Electro-Optics 2012. OSA Technical Digest. Optical Society of America. pp. QM2E.1. CiteSeerX 10.1.1.764.846. doi:10.1364/QELS.2012.QM2E.1. ISBN 978-1-55752-943-5. S2CID 36550833.
  3. ในตำราฟิสิกส์ปี ค.ศ. 1875 ของอาด็อล์ฟ วึลเนอร์ (Adolf Wüllner) ได้มีการอ้างอิงผลการทดลองของทินดัลล์และเพิ่มประมาณการอุณหภูมิที่สอดคล้องกับสีต่าง ๆ ของเสนใยทองคำขาวเข้าไป:
    • Wüllner, Adolph (1875). Lehrbuch der Experimentalphysik [Textbook of experimental physics] (ภาษาเยอรมัน). Vol. 3. Leipzig, Germany: B.G. Teubner. p. 215.
    จาก (Wüllner, 1875), หน้า 215: "Wie aus gleich zu besprechenden Versuchen von Draper hervorgeht, … also fast um das 12fache zu." (ตามการทดลองของเดรเปอร์ซึ่งจะอภิปรายในอีกสักนิด การเรืองแสงสีแดงอ่อนสอดคล้องกับอุณหภูมิประมาณ 525°[C] การเรืองแสงสีขาวเต็มสอดคล้องกับ[อุณหภูมิ]ประมาณ 1200°[C] ดังนั้นแม้อุณหภูมิจะสูงขึ้นมากกว่าสองเท่าเพียงเล็กน้อย ความเข้มของรังสีกลับเพิ่มขึ้นจาก 10.4 เป็น 122 หรือเกือบ 12 เท่า)
    ดูเพิ่ม:
  4. Stefan, J. (1879). "Über die Beziehung zwischen der Wärmestrahlung und der Temperatur" [On the relation between heat radiation and temperature]. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften: Mathematisch-Naturwissenschaftliche Classe (Proceedings of the Imperial Philosophical Academy [of Vienna]: Mathematical and Scientific Class) (ภาษาเยอรมัน). 79: 391–428.
  5. ชเต็ฟฟันกล่าวว่า (Stefan, 1879), หน้า 421: "Zuerst will ich hier die Bemerkung anführen, … die Wärmestrahlung der vierten Potenz der absoluten Temperatur proportional anzunehmen." (ก่อนอื่น ผมอยากชี้แจงถึงสังเกตการณ์ซึ่งวึลเนอร์เพิ่มลงไปในรายงานของการทดลองของทินดัลล์เกี่ยวกับการแผ่รังสีของเส้นใยทองคำขาวซึ่งถูกทำให้เรืองแสงด้วยกระแสไฟฟ้าในตำราของเขา เพราะสังเกตการณ์นี้ทำให้ผมอนุมานได้ว่าการแผ่รังสีความร้อนนั้นมีสัดส่วนกับกำลังสี่ของอุณหภูมิสัมบูรณ์)
  6. Boltzmann, Ludwig (1884). "Ableitung des Stefan'schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie" [Derivation of Stefan's law, concerning the dependency of heat radiation on temperature, from the electromagnetic theory of light]. Annalen der Physik und Chemie (ภาษาเยอรมัน). 258 (6): 291–294. Bibcode:1884AnP...258..291B. doi:10.1002/andp.18842580616.
  7. Massimiliano Badino, The Bumpy Road: Max Planck from Radiation Theory to the Quantum (1896–1906) (2015), p. 31.
  8. (Stefan, 1879), pp. 426–427.
  9. Soret, J.L. (1872) "Comparaison des intensités calorifiques du rayonnement solaire et du rayonnement d'un corps chauffé à la lampe oxyhydrique" [การเปรียบเทียบความเข้มความร้อนของรังสีอาทิตย์กับรังสีจากวัตถุซึ่งถูกทำให้ร้อนด้วยเครื่องพ่นไฟออกซิไฮโดรเจน], Archives des sciences physiques et naturelles (Geneva, Switzerland), 2nd series, 44: 220–229 ; 45: 252–256.
  10. "Sun Fact Sheet".
  11. Waterston, John James (1862). "An account of observations on solar radiation". Philosophical Magazine. 4th series. 23 (2): 497–511. Bibcode:1861MNRAS..22...60W. doi:10.1093/mnras/22.2.60. บนหน้า 505, นักฟิสิกส์ชาวสก็อตจอห์น เจมส์ วอเตอร์สตัน (John James Waterston) ประมาณอุณหภูมิบนพื้นผิวดวงอาทิตย์ไว้ว่าอาจเทากับ 12,880,000°.
  12. See:
  13. "Luminosity of Stars". Australian Telescope Outreach and Education. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2014-08-09. สืบค้นเมื่อ 2006-08-13.
  14. Intergovernmental Panel on Climate Change Fourth Assessment Report. Chapter 1: Historical overview of climate change science เก็บถาวร 2018-11-26 ที่ เวย์แบ็กแมชชีน หน้า 97
  15. Solar Radiation and the Earth's Energy Balance[ลิงก์เสีย]
  16. "Introduction to Solar Radiation". Newport Corporation. เก็บจากแหล่งเดิมเมื่อ 29 ตุลาคม 2013.
  17. Knizhnik, Kalman. "Derivation of the Stefan–Boltzmann Law" (PDF). Johns Hopkins University – Department of Physics & Astronomy. คลังข้อมูลเก่าเก็บจากแหล่งเดิม (PDF)เมื่อ 2016-03-04. สืบค้นเมื่อ 2018-09-03.
  18. (Wisniak, 2002), หน้า 554.

บรรณานุกรมแก้ไข

  • Stefan, J. (1879), "Über die Beziehung zwischen der Wärmestrahlung und der Temperatur" [On the relationship between heat radiation and temperature] (PDF), Sitzungsberichte der Mathematisch-naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften (ภาษาเยอรมัน), 79: 391–428
  • Boltzmann, L. (1884), "Ableitung des Stefan'schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie" [Derivation of Stefan's little law concerning the dependence of thermal radiation on the temperature of the electro-magnetic theory of light], Annalen der Physik und Chemie (ภาษาเยอรมัน), 258 (6): 291–294, Bibcode:1884AnP...258..291B, doi:10.1002/andp.18842580616