ผลคูณไขว้ หรือ ผลคูณเชิงเวกเตอร์ ในทางคณิตศาสตร์ คือ การดำเนินการทวิภาคบนเวกเตอร์สองอันในปริภูมิแบบยุคลิดสามมิติ ซึ่งให้ผลลัพธ์เป็นเวกเตอร์อีกอันหนึ่งที่ตั้งฉากกับสองเวกเตอร์แรก ในขณะที่ผลคูณจุดของสองเวกเตอร์จะให้ผลลัพธ์เป็นปริมาณสเกลาร์ ผลคูณไขว้ไม่มีการนิยามบนมิติอื่นนอกจากสามมิติ และไม่มีคุณสมบัติการเปลี่ยนกลุ่ม เมื่อเทียบกับผลคูณจุด สิ่งที่เหมือนกันคือผลลัพธ์จะขึ้นอยู่กับปริภูมิอิงระยะทาง (metric space) ของปริภูมิแบบยุคลิด แต่สิ่งที่ต่างกันคือผลลัพธ์จะขึ้นอยู่กับการกำหนดทิศทาง (orientation)

ผลคูณไขว้ a × b มีทิศตรงข้ามกับ b × a

นิยาม

แก้
 
การหาทิศทางของเวกเตอร์ลัพธ์ด้วยกฎมือขวา

ผลคูณไขว้ของเวกเตอร์สองอัน a และ b ในปริภูมิสามมิติ เขียนแทนด้วย a × b (อ่านว่า เอ ครอสส์ บี) คือเวกเตอร์ c ที่ตั้งฉากกับทั้ง a และ b โดยมีทิศทางตามกฎมือขวาและมีขนาดเท่ากับพื้นที่ของรูปสี่เหลี่ยมด้านขนานที่เวกเตอร์สองอันนั้นครอบคลุม

ผลคูณไขว้สามารถคำนวณได้จากสูตร

 

เมื่อ θ คือขนาดของมุม (ที่ไม่ใช่มุมป้าน) ระหว่าง a กับ b (0° ≤ θ ≤ 180°) a กับ b ในสูตรคือขนาดของเวกเตอร์ a และ b ตามลำดับ และ   คือเวกเตอร์หน่วยที่ตั้งฉากกับเวกเตอร์ a และ b ถ้าหากทั้งสองเวกเตอร์นั้นร่วมเส้นตรงกัน (คือมีมุมระหว่างเวกเตอร์เป็น 0° หรือ 180°) ผลคูณไขว้จะได้ผลลัพธ์เป็นเวกเตอร์ศูนย์ 0

ทิศทางของเวกเตอร์   ถูกกำหนดโดยกฎมือขวา ซึ่งให้นิ้วชี้แทนทิศทางของเวกเตอร์ a และนิ้วกลางแทนทิศทางของเวกเตอร์ b ทิศทางของเวกเตอร์   จะอยู่ที่นิ้วโป้ง (ดูรูปทางขวาประกอบ)

วิธีคำนวณผลคูณไขว้

แก้

สัญกรณ์พิกัด

แก้

กำหนดให้ i, j, k เป็นเวกเตอร์หน่วยในระบบพิกัดมุมฉาก ที่ตั้งฉากซึ่งกันและกันตามคุณสมบัติต่อไปนี้

 

โดยเวกเตอร์ a และ b สามารถเขียนให้อยู่ในรูปแบบของ i, j, k ได้ดังนี้

 

ผลคูณไขว้ a × b สามารถคำนวณได้จากสูตรนี้ โดยไม่ต้องพิจารณาขนาดของมุม

 

สัญกรณ์เมทริกซ์

แก้

สัญกรณ์พิกัดข้างต้นสามารถเขียนได้อีกอย่างหนึ่งเป็นดีเทอร์มิแนนต์ของเมทริกซ์ดังนี้

 

ดูเพิ่ม

แก้

แหล่งข้อมูลอื่น

แก้