เปิดเมนูหลัก

ในวิชาแคลคูลัส กฎลูกโซ่ (อังกฤษ: Chain rule) คือสูตรสำหรับการหาอนุพันธ์ของฟังก์ชันคอมโพสิต

เห็นได้ชัดว่า หากตัวแปร y เปลี่ยนแปลงตามตัวแปร u ซึ่งเปลี่ยนแปลงตามตัวแปร x แล้ว อัตราการเปลี่ยนแปลงของ y เทียบกับ x หาได้จากผลคูณ ของอัตราการเปลี่ยนแปลงของ y เทียบกับ u คูณกับ อัตราการเปลี่ยนแปลงของ u เทียบกับ x

สมมติให้คนหนึ่งปีนเขาด้วยอัตรา 0.5 กิโลเมตรต่อชั่วโมง อุณหภูมิจะลดต่ำลงเมื่อระดับความสูงเพิ่มขึ้น สมมติให้อัตราเป็น ลดลง 6 °F ต่อกิโลเมตร ถ้าเราคูณ 6 °F ต่อกิโลเมตรด้วย 0.5 กิโลเมตรต่อชั่วโมง จะได้ 3 °F ต่อชั่วโมง การคำนวณเช่นนี้เป็นตัวอย่างของการประยุกต์ใช้กฎลูกโซ่

ในทางพีชคณิต กฎลูกโซ่ (สำหรับตัวแปรเดียว) ระบุว่า ถ้าฟังก์ชัน f หาอนุพันธ์ได้ที่ g(x) และฟังก์ชัน g หาอนุพันธ์ได้ที่ x คือเราจะได้ ดังนั้น

นอกจากนี้ ด้วยสัญกรณ์ของไลบ์นิซ กฎลูกโซ่เขียนแทนได้ดังนี้:

เมื่อ ระบุว่า f เปลี่ยนแปลงตาม g เหมือนเป็นตัวแปรหนึ่ง.

ในการหาปริพันธ์ ส่วนกลับของกฎลูกโซ่คือการหาปริพันธ์โดยการแทนค่า

The general power ruleแก้ไข

กฎเลขยกกำลังทั่วไปสามารถนำมาใช้กับกฎลูกโซ่ได้

Example Iแก้ไข

พิจารณา  .   เทียบได้กับ   โดยที่   และ   ดังนั้น

   
   
 

Example IIแก้ไข

ในการหาอนุพันธ์ของฟังก์ชันตรีโกณมิติ

 

เราสามารถเขียน   ด้วย   และ   จากกฎลูกโซ่ จะได้

 

เนื่องจาก   และ  

กฎลูกโซ่สำหรับหลายตัวแปรแก้ไข

กฎลูกโซ่ใช้ได้กับฟังก์ชันหลายตัวแปรเช่นกัน ตัวอย่างเช่น ถ้าเรามีฟังก์ชัน   โดยที่

  และ  

ดังนั้น

 

บทพิสูจน์กฎลูกโซ่แก้ไข

ให้ f และ g เป็นฟังก์ชัน และให้ x เป็นจำนวนที่ f สามารถหาอนุพันธ์ได้ที่ g(x) และ g หาอนุพันธ์ได้ที่ x ดังนั้น จากนิยามของการหาอนุพันธ์ได้ จะได้

  ซึ่ง   ขณะที่  

ในทำนองเดียวกัน

  ซึ่ง   ขณะที่  

จะได้

   
 

ซึ่ง   จะเห็นว่าขณะที่   นั้น   และ   ดังนั้น

  ขณะที่  

กฎลูกโซ่พื้นฐานแก้ไข

กฎลูกโซ่นั้นเป็นคุณสมบัติพื้นฐานของนิยามของอนุพันธ์ทั้งหมด เช่น ถ้า E F และ G เป็น ปริภูมิบานาค (รวมไปถึงปริภูมิยูคลิดด้วย) และ f : EF และ g : FG เป็นฟังก์ชัน และถ้า x เป็นสมาชิกของ E ซึ่ง f หาอนุพันธ์ได้ที่ x และ g หาอนุพันธ์ได้ที่ f(x) แล้ว อนุพันธ์ (อนุพันธ์เฟรเชต์) ของฟังก์ชันคอมโพสิต g o f ที่ x จะเป็นดังนี้

 

สังเกตว่าอนุพันธ์นี้เป็นการแปลงเชิงเส้น ไม่ใช่ตัวเลข ถ้าการแปลงเชิงเส้นแทนด้วยเมทริกซ์ (จาโคเบียนเมทริกซ์) การรวมทางด้านขวาจะกลายเป็นการคูณเมทริกซ์

การกำหนดกฎลูกโซ่ที่ชัดเจนสามารถทำได้จากวิธีที่เป็นทั่วไปมากที่สุด คือ ให้ M N และ P เป็นแมนิโฟลด์ Ck (หรือบานาคแมนิโฟลด์) และให้

f : MN และ g : NP

เป็นการแปลงที่หาอนุพันธ์ได้ อนุพันธ์ของ f แทนด้วย df จะเป็นการแปลงจากปมสัมผัสของ M ไปยังปมสัมผัสของ N และสามารถเขียนแทนด้วย

 

ด้วยวิธีนี้ รูปแบบของอนุพันธ์และปมสัมผัสจะถูกมองเห็นในรูปฟังก์เตอร์บน Category ของแมนิโฟลด์ C โดยมีการแปลง C เป็นสัณฐาน

เทนเซอร์กับกฎลูกโซ่แก้ไข

ดู สนามเทนเซอร์ สำหรับคำอธิบายเกี่ยวกับบทบาทพื้นฐานของกฎลูกโซ่ในธรรมชาติทางเรขาคณิตของเทนเซอร์