เปิดเมนูหลัก

เอกลักษณ์ของออยเลอร์

เอกลักษณ์ของออยเลอร์ (Euler's identity) คือสมการต่อไปนี้:

ซึ่ง

คือ ลอการิทึมธรรมชาติ
คือ หน่วยจินตภาพ : หนึ่งในจำนวนเชิงซ้อนที่ยกกำลังสองแล้วได้ −1 (อีกตัวคือ )
คือ พาย : อัตราส่วนระหว่างเส้นรอบวง ต่อ เส้นผ่านศูนย์กลาง ของวงกลม

เอกลักษณ์นี้ บางครั้งเขียนว่า

ซึ่งแสดงให้เห็นค่าคงที่ทางคณิตศาสตร์ถึง 5 อย่างด้วยกัน

ที่มาแก้ไข

สมการนี้ ปรากฏอยู่ใน Introduction ของเลออนฮาร์ด ออยเลอร์ ซึ่งตีพิมพ์ใน Lausanne ใน พ.ศ. 2291 (ค.ศ. 1748) เอกลักษณ์นี้เป็นกรณีหนึ่งของสูตรของออยเลอร์ (Euler's formula) ซึ่งกล่าวว่า

 

สำหรับจำนวนจริง   ถ้าเราให้   จะได้

 

จากนิยามของ

 

และ

 

เราจะได้