ทฤษฎีบทมูลฐานของเลขคณิต
บทความนี้ไม่มีการอ้างอิงจากแหล่งที่มาใด |
ทฤษฎีบทมูลฐานของเลขคณิต หรือ ทฤษฎีบทการแยกตัวประกอบได้อย่างเดียว (อังกฤษ: fundamental theorem of arithmetic หรือ unique factorization theorem) ในคณิตศาสตร์และทฤษฎีจำนวน คือประโยคซึ่งกล่าวว่า จำนวนเต็มบวกทุกจำนวนที่มากกว่า 1 สามารถเขียนอยู่ในรูปผลคูณของจำนวนเฉพาะได้วิธีเดียวเท่านั้น ตัวอย่างเช่น เราสามารถเขียน
- 6936 = 23 · 3 · 172 หรือ 1200 = 24 · 3 · 52
และไม่มีทางที่จะแยกตัวประกอบของ 6936 หรือ 1200 ได้เป็นอย่างอื่น ถ้าเราไม่สนใจลำดับของตัวประกอบ
เพื่อที่จะให้ทฤษฏีบทนี้ใช้ได้กับจำนวน 1 เราจะถือว่า 1 เป็นผลคูณของของจำนวนเฉพาะศูนย์จำนวน (ดูใน ผลคูณว่าง)
การประยุกต์แก้ไข
ส่วนนี้รอเพิ่มเติมข้อมูล คุณสามารถช่วยเพิ่มข้อมูลส่วนนี้ได้ |
การพิสูจน์แก้ไข
การพิสูจน์จะประกอบด้วย 2 ส่วน ส่วนแรก เราจะพิสูจน์ให้เห็นว่าจำนวนทุกจำนวน สามารถเขียนอยู่ในรูปผลคูณของจำนวนเฉพาะได้ จากนั้นจะพิสูจน์ว่าการเขียน 2 แบบใด ๆ จะเหมือนกันเสมอ
สมมติว่ามีจำนวนเต็มบวก ที่ไม่สามารถเขียนในรูปผลคูณของจำนวนเฉพาะได้ ดังนั้น จะต้องมีจำนวนที่น้อยสุดในจำนวนพวกนั้น ให้จำนวนนั้นคือ n ดังนั้น n ไม่สามารถเป็น 1 ได้เพราะว่าจะขัดแย้งกับสมมติฐานข้างต้น และ n ไม่สามารถเป็นจำนวนเฉพาะได้เพราะจำนวนเฉพาะคือผลคูณของจำนวนเฉพาะตัวเดียว ดังนั้น n จะต้องเป็นจำนวนประกอบ จะได้
- n = ab
เมื่อ a และ b เป็นจำนวนเต็มบวกที่น้อยกว่า n แต่ n เป็นจำนวนที่น้อยที่สุดที่ทำให้ทฤษฎีบทผิด ดังนั้น a และ b ต้องเขียนในรูปผลคูณของจำนวนเฉพาะได้ ทำให้ n = ab เขียนในรูปผลคูณของจำนวนเฉพาะได้ เกิดข้อขัดแย้ง
ในส่วนของการพิสูจน์ว่า จำนวนทุกจำนวนสามารถเขียนในรูปผลคูณของจำนวนเฉพาะได้แบบเดียว เราจะใช้ข้อเท็จจริงว่า ถ้าจำนวนเฉพาะ p หารผลคูณ ab ลงตัวแล้ว มันจะหาร a ลงตัว หรือหาร b ลงตัว เป็นบทตั้งในการพิสูจน์ ถ้า p หาร a ไม่ลงตัวแล้ว p และ a จะเป็นจำนวนเฉพาะสัมพัทธ์ จากเอกลักษณ์ของเบซู (Bézout's identity) จะได้ว่ามีจำนวนเต็ม x และ y ที่ทำให้
- px + ay = 1
คูณทั้งสองข้างด้วย b จะได้
- pbx + aby = b
เนื่องจากฝั่งซ้ายมือหารด้วย p ลงตัว ดังนั้นฝั่งขวามือจึงหารด้วย p ลงตัวด้วย เป็นการพิสูจน์บทตั้ง
จากนั้น นำผลคูณของจำนวนเฉพาะที่เท่ากันมา 2 ผลคูณ ให้ p เป็นจำนวนเฉพาะในผลคูณแรก p จะหารผลคูณแรกลงตัว และจะหารผลคูณที่สองลงตัวด้วย จากข้อเท็จจริงข้างต้น p จะต้องหารตัวประกอบในผลคูณที่สองลงตัวอย่างน้อย 1 ตัว แต่ตัวประกอบเป็นจำนวนเฉพาะทั้งหมด ดังนั้น p จะต้องเท่ากับตัวประกอบตัวใดตัวหนึ่งของผลคูณที่สอง ดังนั้น เราจึงตัด p ออกจากทั้งสองผลคูณได้ และทำซ้ำอย่างนี้ไปเรื่อยๆ จะเห็นว่าตัวประกอบเฉพาะของผลคูณสองผลคูณจะจับคู่กันเสมอ
ดูเพิ่มแก้ไข
บทความเกี่ยวกับคณิตศาสตร์นี้ยังเป็นโครง คุณสามารถช่วยวิกิพีเดียได้โดยการเพิ่มเติมข้อมูล ดูเพิ่มที่ สถานีย่อย:คณิตศาสตร์ |