กรุป (คณิตศาสตร์)

โครงสร้างทางพีชคณิตที่มีการดำเนินการที่เปลี่ยนกลุ่มได้ มีสมาชิกเอกลักษณ์และหาอินเวอร์สได้

กรุป (อังกฤษ: group) ในพีชคณิตนามธรรม คือ เซตกับการดำเนินการทวิภาค เช่น การคูณหรือการบวก ซึ่งสอดคล้องกับสัจพจน์ ตัวอย่างเช่น เซตของจำนวนเต็มเป็นกรุปภายใต้การดำเนินการการบวก สาขาของคณิตที่ศึกษาเกี่ยวกับกรุปเรียกว่า ทฤษฎีกรุป ตัวอย่างของกรุปที่ง่ายที่สุดคือ เซตของจำนวนเต็มภายใต้การบวกปรกติ ซึ่งเป็นกรุปแบบหนึ่ง แต่กรุปยังปรากฎในสาขาอื่น ๆ ทั้งในคณิตศาสตร์และสาขาอื่น ๆ[1]

การหมุนหน้าของลูกบาศก์ของรูบิกประกอบกันเป็นกรุป เรียกว่า กรุปลูกบาศก์ของรูบิก

กรุปยังเป็นเครื่องมือที่สำคัญในการศึกษาสมมาตรในรูปแบบต่าง ๆ หลักการที่ว่า "สมมาตรของวัตถุใดๆก่อให้เกิดกรุป" เป็นหลักพื้นฐานของคณิตศาสตร์มากมาย ตัวอย่างโดยตรงคือกรุปสมมาตรของวัตถุ ซึ่งเป็นเครื่องมือหนึ่งในการอธิบายสมมาตรของวัตถุเชิงเรขาคณิต กรุปสมมาตรมีสมาชิกประกอบไปด้วยการแปลง (การหมุน การพลิกรูป การสะท้อน ฯลฯ) ที่คงรูปทรงของวัตถุนั้น ลีกรุปเป็นกรุปสมมาตรชนิดหนึ่งที่ปรากฎในแบบจำลองมาตรฐานของฟิสิกส์อนุภาค กรุปปวงกาเรเป็นลีกรุปที่มีสมาชิกเป็นสมมาตรของกาลอวกาศในสัมพัทธภาพพิเศษ ในขณะที่กรุปจุดสามารถอธิบายสมมาตรของโมเลกุลเคมีได้

กรุปมีจุดกำเนิดเริ่มแรกจากการศึกษาสมการเชิงพหุนาม ในช่วงคริสต์ทศวรรษที่ 1830 เอวาริสต์ กาลัวเป็นคนแรกที่ใช้คำว่า กรุป (Groupe ในภาษาฝรั่งเศส) เรียกกรุปสมมาตรของรากของพหุนาม ซึ่งปัจจุบันเราเรียกกรุปเหล่านั้นว่า กรุปกาลัว ตั้งแต่นั้นมีการศึกษากรุปจากสาขาอื่น ๆ ในคณิตศาสตร์ เช่น ทฤษฎีจำนวน และ เรขาคณิต ก่อนที่แนวความคิดเกี่ยวกับกรุปทั่ว ๆ ไปจะนิยามในช่วงปี 1870 ในช่วงเวลาเดียวกับที่คณิตศาสตร์พัฒนาไปในทิศทางที่เป็นนามธรรมขึ้นเรื่อย ๆ ทฤษฎีกรุปจึงเป็นสาขาสำคัญของพีชคณิตนามธรรม

ในปัจจุบัน ทฤษฎีกรุปสมัยใหม่ศึกษากรุปในตัวมันเอง ซึ่งนำไปสู่แนวคิดมากมาย เช่น สับกรุป กรุปผลหาร และ กรุปเชิงเดี่ยว นอกจากนี้นักคณิตศาสตร์ยังศึกษากรุปในมุมมองที่เป็นรูปธรรมมากขึ้น และสามารถระบุได้อย่างเจาะจง การศึกษานี้นำไปสู่ทฤษฎีตัวแทนและทฤษฎีกรุปเชิงการคำนวณ

นิยามพื้นฐานแก้ไข

กรุป (G, * ) คือ เซตไม่ว่าง G กับ การดำเนินการทวิภาค * : G × GG, ซึ่งสอดคล้องกับสัจพจน์ข้างล่าง. "a * b" ใช้แสดงผลลัพธ์ของการใช้ตัวดำเนินการ * กับคู่อันดับ (a, b) ของสมาชิกของ G. สัจพจน์ของกรุปมีดังนี้:

ความคิดพื้นฐานในทฤษฎีกรุปแก้ไข

อันดับของกรุปและสมาชิกแก้ไข

อันดับของกรุป G นิยมเขียนเขียนแทนด้วย |G| หรือ o(G) หมายถึงจำนวนสมาชิกในเซต G ถ้าอันดับเป็นจำนวนไม่จำกัด กรุปนั้นเป็นกรุปอนันต์ เขียนว่า |G| = ∞

อันดับของสมาชิก a ในกรุป G คือจำนวนเต็ม n ที่น้อยที่สุดที่ทำให้ an = e โดยที่ an คือ a คูณตัวมันเอง n ครั้ง (หรือองค์ประกอบที่เหมาะสมอื่นๆ ขึ้นอยู่กับตัวดำเนินการของกรุป) ถ้า n ไม่ปรากฏ จะเรียกได้ว่า a มีอันดับเป็นอนันต์

ควร G

อาบีเลียนกรุปแก้ไข

กรุป G เรียกได้ว่าเป็น อาบีเลียนกรุป (หรือกรุปสลับที่) ถ้าการดำเนินการเป็นแบบสลับที่ได้ คือสำหรับทุกๆ a,b ใน G , a * b = b * a คำว่า อาบีเลียน (Abelian) ตั้งขึ้นเป็นเกียรติแด่นักคณิตศาสตร์ นีลส์ อะเบล (Niels Abel)

กรุปวัฏจักรแก้ไข

กรุปวัฏจักร คือกรุปซึ่งสมาชิกของมันอาจถูกก่อกำเนิดโดยการประกอบที่ต่อเนื่องกันของการดำเนินการซึ่งนิยามโดยกรุปจะถูกใช้กับสมาชิกเดี่ยวของ กรุปนั้น สมาชิกเดี่ยวนี้เรียกว่า ตัวก่อกำเนิดหรือสมาชิกปฐมฐานของกรุปนั้น

กรุปวัฏจักรการคูณซึ่ง G เป็นกรุป และ a เป็นตัวก่อกำเนิด

 

กรุปวัฏจักรการบวก ตัวก่อกำเนิกเป็น a

 

ถ้าการประกอบที่ต่อเนื่องกันของการดำเนินการซึ่งนิยามโดยกรุปถูกใช้กับสมาชิกไม่ปฐมฐานของกรุป กรุปย่อยวัฏจักรจะถูกก่อกำเนิด อันดับของ กรุปย่อยวัฏจักรแบ่งอันดับของกรุปนั้น ดังนั้นถ้าอันดับของกรุปเป็นจำนวนเฉพาะ สมาชิกทุกตัวยกเว้นสมาชิกเอกลักษณ์จะเป็นสามชิกปฐมฐานของกรุป

ควรระลึกไว้ด้วยว่า กรุปประกอบด้วยกรุปย่อยวัฏจักรซึ่งถูกก่อกำเนิดโดยสมาชิกแต่ละตัวในกรุป อย่างไรก็ตามกรุปซึ่งประกอบขึ้นจากกรุปย่อยวัฏจักรนั้น ตัวมันเองไม่จำเป็นที่จะต้องเป็นกรุปวัฏจักรเสมอไป ตัวอย่างเช่น กรุปไคลน์ไม่เป็นกรุปวัฏจักรแม้ว่าจะประกอบขึ้นมาจากกรุปวัฏจักรที่มีอันดับเป็น 2 ที่เหมือนกันสองกรุปก็ตามที

สัญกรณ์สำหรับกรุปแก้ไข

กรุปสามารถใช้สัญกรณ์ต่างๆ กันขึ้นอยู่กับบริบทและการดำเนินการ

  • กรุปการบวก ใช้ + เพื่อแสดงถึงการบวก และเครื่องหมายลบ - แสดงถึงสมาชิกผกผัน เช่น a + (-a) = 0 ใน Z
  • กรุปการคูณ ใช้ *,. หรือสัญลักษณ์ทั่วไป   เพื่อแสดงถึงการคูณ และตัวยก -1 เพื่อแสดงสมาชิกผกผัน เช่น a*a-1 = 1 เป็นเรื่องธรรมดาที่จะไม่เขียน * และเขียนเป็น aa-1 แทน
  • กรุปแบบฟังก์ชัน ใช้ • เพื่อแสดงการประกอบฟังก์ชัน และตัวยก -1 เพื่อแสดงสมาชิกผกผัน เช่น gg-1 = e เป็นเรื่องทั่วไปที่จะไม่เขียน • และเขียนเป็นgg-1 แทน

การละเลยตัวดำเนินการเป็นเรื่องทั่วไปที่ยอมรับได้ และทิ้งให้ผู้อ่านรู้บริบทและการดำเนินการเอาเอง

เมื่อจะนิยามกรุป มีสัญกรณ์มาตรฐานที่ใช้วงเล็บในการนิยามกรุปและการดำเนินการของมัน ตัวอย่างเช่น (H, +) แสดงว่าเซต H เป็น กรุปภายใต้การบวก

สมาชิกเอกลักษณ์ e หรือบางครั้งก็เรียกว่า สมาขิกกลาง และบางครั้งก็ถูกแสดงโดยใช้สัญลักษณ์อืนๆ ขึ้นอยู่กับกรุปนั้นๆ :

  • ในกรุปการคูณ สมาชิกเอกลักษณ์คือ 1
  • ในกรุปเมทริกซ์หาตัวผกผันได้ สมาชิกเอกลักษณ์มักแทนด้วย I
  • ในกรุปการบวก สมาชิกเอกลักษณ์อาจเขียนเป็น 0
  • ในกรุปแบบฟังก์ชัน สมาชิกเอกลักษณ์มักใช้เป็น f0

ตัวอย่างของกรุปแก้ไข

อาบีเลียนกรุป : จำนวนเต็มภายใต้การบวกแก้ไข

กรุปที่คุ้นเคยกันก็คือกรุปของจำนวนเต็มภายใต้การบวก ให้ Z เป็นเซตของจำนวนเต็ม {..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...} และให้สัญลักษณ์ + แสดงการดำเนินการบวก แล้ว (Z,+) เป็นกรุป

พิสูจน์ :

  • สมบัติการปิด ถ้า a และ b เป็นจำนวนเต็ม แล้ว a+b ก็เป็นจำนวนเต็ม
  • สมบัติการเปลี่ยนหมู่ ถ้า a b และ c เป็นจำนวนเต็มแล้ว (a + b) + c = a + (b + c)
  • สมาชิกเอกลักษณ์ 0 เป็นจำนวนเต็ม สำหรับจำนวนเต็ม a ใดๆ 0 + a = a + 0 = a
  • สมาชิกผกผัน ถ้า a เป็นจำนวนเต็มแล้ว -a สอดคล้องกับกฎการผกผัน a + (−a) = (−a) + a = 0

กรุปนี้เป็นอาบีเลียนกรุปด้วยเพราะ a + b = b + a

อ้างอิงแก้ไข

  1. Mackey, George W. (1973). "Group Theory and Its Significance for Mathematics and Physics". Proceedings of the American Philosophical Society. 117 (5): 374–380. ISSN 0003-049X.