ไรโซเบียม
Rhizobium | |
---|---|
การจำแนกชั้นทางวิทยาศาสตร์ | |
อาณาจักร: | แบคทีเรีย |
ไฟลัม: | Proteobacteria |
ชั้น: | Alpha Proteobacteria |
อันดับ: | Rhizobiales |
วงศ์: | Rhizobiaceae |
สกุล: | Rhizobium Frank 1889 |
ชนิดต้นแบบ | |
Rhizobium leguminosarum | |
Species | |
R. cellulosilyticum |
ไรโซเบียม (Rhizobium) เป็นจีนัสของแบคทีเรียที่อยู่ในปมรากของพืชตระกูลถั่ว มีรูปร่างไม่แน่นอน เปลี่ยนแปลงตลอดวงชีวิต แหล่งพลังงานของไรโซเบียมได้แก่ มอลโตส ซูโครส กลูโคสและแมนนิทอลแต่ไม่สามารถใช้เซลลูโลส แป้งและเพกตินเป็นแหล่งพลังงานได้ [1] เมื่อมีคาร์บอนมากเกินไป ไรโซเบียมจะสะสมอาหารในรูป poly-3-hydroxybutyrate (PHB) เพื่อนำไปใช้ในช่วงมืด ภาวะอดอยากหรือสภาวะที่ปมรากเริ่มชรา ใช้ออกซิเจนเป็นตัวรับอิเล็กตรอน ถ้าอยู่ในปมรากจะได้ไนโตรเจนจากอากาศ ถ้าอยู่ในอาหารเลี้ยงเชื้อต้องเติมไนโตรเจนลงในอาหารด้วย แบ่งตามการเจริญในอาหารเลี้ยงเชื้อเป็น 2 กลุ่มคือ พวกเจริญเร็ว เกิดโคโลนีภายใน 3-5 วัน กับพวกเจริญช้า เกิดโคโลนีภายใน 5-10 วัน[1]
การจัดจำแนก
แก้ไรโซเบียมแบ่งได้เป็น 3 กลุ่มคือ [2]
- Rhizobium เป็นกลุ่มที่เจริญเร็ว เกิดปมกับถั่วอัลฟัลฟา ถั่วลันเตา และพืชตระกูลถั่วอื่น
- Bradyrhizobium เป็นกลุ่มที่เจริญช้า เกิดปมกับถั่วเหลือง ถั่วพร้า และถั่วในเขตร้อนอื่น เป็นประชากรกลุ่มใหญ่ของไรโซเบียมในประเทศไทย ประมาณ 99% [3]
- Azorhizobiumเป็นกลุ่มที่เกิดปมกับลำต้นพืชตระกูลถั่ว และตรึงไนโตรเจนเมื่ออยู่เป็นอิสระได้
การจัดจำแนกไรโซเบียมในปัจจุบันมี 5 วิธี ได้แก่ [1]
- การจัดจำแนกโดย Fred (1932) และ Breed (1975) จัดให้อยู่ในดิวิชัน Protophyta คลาส Schizomycetes อันดับ Eubacteriales วงศ์ Rhizobiaceae สกุล Rhizobium
- การจัดจำแนกตามพืชตระกูลถั่วที่ทำให้เกิดปม ใช้หลักความสามารถที่ทำให้พืชตระกูลถั่วเกิดปมได้เป็นเกณฑ์ วิธีนีเจแนกไรโซเบียมได้หลายชนิด และแบ่งถั่วเป็นกลุ่มได้ 20 กลุ่ม แต่มีความสัมพันธ์ชัดเจนเพียง 6 กลุ่ม นอกจากนั้นยังมีความไม่แน่นอนที่ไรโซเบียมบางสายพันธุ์ทำให้ถั่วต่างกลุ่มเกิดปมได้ อย่างไรก็ตาม ชื่อสปีชีส์ของไรโซเบียมในปัจจุบันกำหนดโดยวิธีนี้
- การจัดจำแนกตามความสามารถในการผลิตกรดหรือด่าง ซึ่งแบ่งได้เป็น 2 ชนิดคือ ชนิดที่ผลิตกรด กับชนิดที่ผลิตด่างในอาหาร นิยมใช้เป็นวิธีที่ทดสอบข้อมูลเบื้องต้นของไรโซเบียม
- การจัดจำแนกโดยใช้ข้อมูลจากดีเอ็นเอ
- การจัดจำแนกโดยนำลักษณะหรือสมบัติต่างๆ มาเปรียบเทียบแล้วหาร้อยละความคล้ายคลึง
วงชีวิต
แก้วงชีวิตของไรโซเบียมมีขั้นตอนดังนี้ [1]
- เซลล์รูปกลม ไม่เคลื่อนที่ พบในสารละลายดินที่มีฤทธิ์เป็นกลาง
- เซลล์มีขนาดโตขึ้น รูปกลม พบในสภาพแวดล้อมที่มีฟอสเฟตหรือคาร์โบไฮเดรตบางชนิด
- เซลล์ขยายเป็นรูปวงรี มีแฟลกเจลลา เคลื่อนที่ได้เร็ว
- เซลล์ขยายตัวมากขึ้นจนเป็นท่อนยาวเล็ก เคลื่อนที่ช้าลง
- เซลล์เป็นท่อนยาว สร้างท่อเส้นด้ายและเข้าสู่พืช
- เซลล์ในปมรากอยู่ในรูปของแบคทีรอยด์ พร้อมที่จะแบ่งตัวมาเป็นเซลล์รูปกลมอีกครั้ง
การเข้าสู่พืชตระกูลถั่ว
แก้การเกิดปมที่ราก
แก้เริ่มจากพืชตระกูลถั่วส่งสัญญาณทางเคมี เป็นสารกลุ่มฟลาโวนอยด์ หรือไอโซฟลาโวนอยด์ สารนี้จะไปกระตุ้นการทำงานของ nod gene ในไรโซเบียม เมื่อยีนนี้ทำงานจะกระตุ้นให้ไรโซเบียมสร้างและปล่อยสารที่กระตุ้นให้รากพืชโค้งงอและเกิดการแบ่งตัวของเนื้อเยื่อเจริญจนเป็นปม พร้อมกันนั้น ผนังเซลล์ของพืชจะออ่อนตัวลงและยอมให้ไรโซเบียมเข้าสู่เซลล์ได้ ถั่วบางชนิดที่ไม่มีรากขนอ่อน เช่นถั่วลิสง ไรโซเบียมจะเข้าทางรอยแตกที่รากแขนงแทงออกมา[1]
การเกิดปมที่ลำต้น
แก้พืชที่เกิดปมกับไรโซเบียมที่ลำต้นมีน้อย ที่ได้รับความสนใจเป็นพิเศษคือโสนแอฟริกันเพราะมีตำแหน่งการเกิดปมบนลำต้นที่ทราบล่วงหน้าได้ และเกิดขึ้นอย่างอิสระ ไม่ขึ้นกับไรโซเบียม ไรโซเบียมจะเข้าสู่ลำต้นทางรอยแตกหรือรอยแยกบนปุ่มกลม [1]
ลักษณะของปมรากถั่ว
แก้ปมที่มีประสิทธิภาพในการตรึงไนโตรเจนต้องมีรูปร่างถูกต้องตามลักษณะของถั่ว ขนาดโตพอสมควร ผิวเรียบ ไม่ขรุขระ ควรจับเป็นกลุ่มบริเวณรากแก้ว มีสีแดงหรือสีชมพูของ legheamoglobin มีจำนวนปมมากพอสมควร [1]
โครงสร้างของปมรากพืชตระกูลถั่วมี 4 ชั้น ดังนี้
- ชั้นนอกสุดเป็นเนื้อเยื่อพาเรงไคมา บางครั้งจะมีแทนนินด้วย
- ชั้นเนื้อเยื่อเจริญ อยู่ด้านนอกถัดจากชั้นแรกเข้ามา ในถั่วบางชนิดเห็นชัด แต่บางชนิดไม่เห็นเลย
- เนื้อเยื่อลำเลียง เกิดขึ้นหลังจากเกิดปมแล้ว โดยเจริญมาจากเนื้อเยื่อลำเลียงของรากพืช
- ส่วนที่มีแบคทีรอยด์อยู่ เป็นบริเวณที่แยกจากเนื้อเยื่อลำเลียงอย่างชัดเจน มีแบคทีรอยด์จำนวนมาก มักมีสีแดงของ legheamoglobin
ปัจจัยที่มีผลต่อการเจริญ
แก้- อุณหภูมิ อุณหภูมิที่ทำให้เกิดปมได้ดีที่สุดคือ 20 -30 องศาเซลเซียส ถ้าสูงหรือต่ำกว่านี้การเกิดปมจะลดลง ซึ่งอุณหภูมินี้เกี่ยวข้องกับการทำงานของเอนไซม์ไนโตรจีเนสด้วย
- pH การตรึงไนโตรเจนที่เกิดในพืชตระกูลถั่วและไรโซเบียม เกิดที่ pH 5-8
- แสง
- อิทธิพลของแสงจากการสังเคราะห์ด้วยแสง จะส่งผลต่อปริมาณคาร์โบไฮเดรตที่ส่งมายังราก ถ้าอัตราส่วนระหว่างคาร์บอนต่อไนโตรเจนไม่เหมาะสม การตรึงไนโตรเจนจะหยุด
- อิทธิพลของแสงสีแดง แสงสีแดงมีอิทธิพลต่อการแบ่งเซลล์ในรากพืชให้เกิดเป็นปมขึ้น
- น้ำ ถ้าน้ำในดินต่ำมากจนน้ำหนักปมลดลงต่ำกว่า 80% ของน้ำหนักที่อุ้มน้ำเต็มที่ การตรึงไนโตรเจนจะหยุด ปมรากจะหลุดออก ถ้าน้ำท่วม การตรึงไนโตรเจนในรากจะต่ำมาก ถ้าน้ำขังนานเกินไป ปมจะเน่าไป
- อิทธิพลของธาตุต่างๆ [1]
- ไนโตรเจน ไนโตรเจนต่ำจะกระตุ้นให้เกิดปมได้ดี ถ้าสูงเกินไปจะขัดขวางการเข้าสู่ปมของไรโซเบียม
- ฟอสฟอรัสและโพแทสเซียม ส่งผลต่อการเจริญของต้นถั่วมากกว่า
- แคลเซียม ช่วยให้ไรโซเบียมเพิ่มจำนวนก่อนเข้าสู่ปมราก การเข้าสู่รากพืชต้องการแคลเซียมสูง
- แมกนีเซียม มีความจำเป็นต่อการทำงานของ ATP และส่งผลต่อการเจริญของต้นถั่ว
- กำมะถัน เป็นองค์ประกอบของเอนไซม์ไนโตรจีเนส ถ้าไม่พอ การตรึงไนโตรเจนถูกจำกัด
- แมงกานีส สังกะสี ทองแดง อะลูมิเนียม ถ้ามีมากเกินไปจะทำให้เกิดปมได้น้อยลง
- โมลิบดินัม เป็นองค์ประกอบของเอนไซม์ไนโตรจีเนส ถ้าไม่พอ การตรึงไนโตรเจนถูกจำกัด
- โคบอลต์ เป็นองค์ประกอบของวิตามินบีสิบสอง เกี่ยวข้องกับการสังเคราะห์ legheamoglobin
- โบรอน จำเป็นต่อการตรึงไนโตรเจนแต่ยังไม่ทราบกลไก
- แคดเมียม ถ้ามีมากเกินไปเป็นพิษต่อเอนไซม์ไนโตรจีเนส
- เหล็ก เป็นองค์ประกอบของไนโตรจีเนสและโปรตีนอื่นๆ เช่น legheamoglobin ไรโซเบียมจะสร้าง siderophore เพื่อช่วยในการนำเหล็กมาใช้ภายในเซลล์ การขาดเหล็กทำให้การพัฒนาของปมถูกจำกัด นอกจากนั้น เหล็กยังมีบทบาทสำคัญในการตรึงไนโตรเจนโดยเป็นโคแฟคเตอร์ในการสร้าง โปรตีนควบคุมการตรึงไนโตรเจน (NiFA) ที่ทำงานได้ [4]
- อิทธิพลของก๊าซ
- ก๊าซไนโตรเจน ต้องมีในระดับที่เพียงพอ และขึ้นกับความสามารถในการแพร่เข้าสู่ปม
- ก๊าซไฮโดรเจน เป็นตัวให้อิเล็กตรอนแก่การตรึงไนโตรเจน และป้องกันอันตรายของออกซิเจนต่อไนโตรจีเนส ถ้ามีออกซิเจนมากไป
- แก๊สออกซิเจน ต้องมีปริมาณต่ำจึงจะเกิดการตรึงไนโตรเจนได้ดี ถ้ามากไปจะยับยั้งการทำงานของไนโตรจีเนส น้อยเกินไปไม่เพียงพอต่อการหายใจของไรโซเบียม legheamoglobin จะรวมกับออกซิเจนได้เป็น oxygenated legheamoglobin ซึ่งจะเป็นตัวรับอิเล็กตรอนในการหายใจของไรโซเบียมในปม
- ก๊าซคาร์บอนมอนอกไซด์ จับกับไนโตรจีเนสได้ดี จึงเป็นคู่แข่งขันกับก๊าซไนโตรเจน และยังแข่งขันกับแก๊สออกซิเจนในการจับกับ legheamoglobin ได้ด้วย ทำให้ความสามารถในการควบคุมปริมาณออกซิเจนของ legheamoglobin ลดลง
- ก๊าซคาร์บอนไดออกไซด์ ลดอัตราการหายใจของแบคทีรอยด์ในปมรวมทั้งไรโซเบียมในดิน
- ก๊าซอะเซทิลีน แข่งขันกับก๊าซไนโตรเจนในการจับกับไนโตรจีเนส
- ก๊าซเอทิลีน ทำให้การเกิดปมหยุดชะงัก
- จุลินทรีย์ในดิน จุลินทรีย์บางชนิดสร้างสารปฏิชีวนะทำให้ไรโซเบียมหยุดการเจริญเติบโต จุลินทรีย์บางชนิด เช่น Bdellouibrio ทำลายเซลล์ของไรโซเบียมโดยตรง จุลินทรีย์บางชนิดสร้างสารที่เป็นประโยชน์ต่อไรโซเบียม เช่น Cytophaga ซึ่งย่อยสลายเซลลูโลสให้เป็นอาหารของไรโซเบียม
- อินทรียวัตถุ ถ้ามีมากจะทำให้ไรโซเบียมมีชีวิตอยู่ในดินได้นานโดยไม่ต้องอาศัยพืชตระกูลถั่ว แต่สารอินทรีย์ที่เป็นพิษต่อไรโซเบียม เช่น กรดฟีโนลิก จะทำให้การเจริญของไรโซเบียมหยุดชะงักและเกิดการกลายพันธุ์ได้
- บริเวณไรโซสเฟียร์ของพืช สารอินทรีย์ที่ปล่อยออกมาจากรากพืชชนิดอื่นมีประโยชน์ต่อไรโซเบียมเช่นกัน เช่น สารที่ปล่อยออกมาจากรากพืชของพืชวงศ์ Polygonaceae Malvaceae Graminae แต่พืชบางชนิด เช่น ทานตะวัน จะปล่อยสารที่เป็นพิษต่อไรโซเบียม [1]
- ฤดูกาลและการใช้พื้นที่ พื้นที่ป่าที่ไม่ถูกรบกวนมีไรโซเบียมน้อยกว่าพื้นที่ทำการเกษตร ประชากรของไรโซเบียมในดินในฤดูหนาวจะต่ำกว่าฤดูฝนและฤดูแล้ง [3]
- สารปราบศัตรูพืช ทำให้การเจริญของไรโซเบียมหยุดะงักหรือเกิดการกลายพันธุ์ โดยเฉพาะสารกำจัดวัชพืช [5]
การใช้ประโยชน์
แก้- การใช้เป็นปุ๋ยพืชสด โดยนำไปคลุกกับพืชตระกูลถั่วก่อนปลูกเป็นปุ๋ยพืชสด [1]
- การเพิ่มประสิทธิภาพของไรโซเบียมโดยการปรับปรุงพันธุ์หรือใช้ร่วมกับแบคทีเรียชนิดอื่น เช่น แบคทีเรียที่ผลิตยาปฏิชีวนะเพื่อเพิ่มการยึดครองพื้นที่และการเกิดปม[6] หรือการการถ่ายฝากยีน nif จากไรโซเบียมไปยังพืช[7]
- การตัดต่อยีนที่ย่อยสลายสารพิษเข้าสู่ไรโซเบียม เพื่อให้ไรโซเบียมนั้นย่อยสลายสารพิษได้ด้วย เช่น การเพิ่มยีนที่ย่อยสลาย ไตรคลอโรเอทิลีน เข้าสู่ไรโซเบียมทำให้ไรโซเบียมนั้นย่อยสลายสารพิษได้[8]
อ้างอิง
แก้- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 สมศักดิ์ วังใน. การตรึงไนโตรเจน:ไรโซเบียม-พืชตระกูลถั่ว. กทม. มหาวิทยาลัยเกษตรศาสตร์. 2541
- ↑ Atlas, R.M., and R. Bartha. 1998. Microbial Ecology: Fundamental and application. 4th ed. Mehlo park. Benjamin/Cumming Science Publishing
- ↑ 3.0 3.1 นันทกร บุญเกิดและคณะ. 2544. ผลกระทบจากการเปลี่ยนแปลงประชากรของกระบวนการทางนิเวศวิทยาต่อการเปลี่ยนแปลงประชากรของจุลินทรีย์ตรึงไนโตรเจนในดิน ใน รายงานการวิจัยในโครงการ BRT. วิสุทธิ์ ใบไม้ และรังสิมา คุ้มหอมม บรรณาธิการ. กทม.: โครงการพัฒนาองค์ความรู้และศึกษานโยบายการจัดการทรัพยากรชีวภาพในประเทศไทย.
- ↑ Reigh, G.,and M. O'Connell. 1993. Siderophore-mediated iron transport correlate with the presence of specific iron-regulated protein in the outer membrane of Rhizobium meliloti. Journal of Bacteriology. 175, 94-102
- ↑ Robert, J.M.F. 1992. Effect of pest management system on biological nitrogen fixation In Biological Nitrogen Fixation and Sustainability of Tropical Agriculture, K. Melongoy, M. Gueye, and D.S.C. Spancer, eds. John Wiely and Sons.
- ↑ Killham, k. 1995. Soil Ecology. Cambridge university. Cambridge
- ↑ Lynch, C.M. 1983. Soil Biotechnology. Blackwell Scientific Publication.
- ↑ Shim, H. et al. 2000. Rhizosphere competitiveness of trichloroethylene-degrading poplar colonizing bacteria. Applied and Environmental Microbiology. 66 (11): 4673-4678