เอทิลีน
General | |
---|---|
Molecular formula | C2H4 |
IUPAC Name | Ethene |
SMILES | C=C |
InChI | 1/C2H4/c1-2/h1-2H2 |
Molar mass | 28.05 g/mol |
Appearance | colorless gas |
CAS number | [74-85-1] |
Properties | |
Density and phase | 1.178 kg/m³ at 15 °C, gas [1] |
Solubility in water | 3.5 mg/100 ml (17 °C) |
Melting point | −169.2 °C (104.0 K, -272.6 °F) |
Boiling point | −103.7 °C (169.5 K, -154.7 °F) |
pKa | 44 |
Critical point | 282.4 K (9.2 °C) at 5.04 MPa (50 atm) |
Std enthalpy of formation ΔfH°gas |
+52.47 kJ/mol |
Standard molar entropy S°gas |
219.32 J·K−1·mol−1 |
Structure | |
Symmetry group | D2h |
Dipole moment | Zero |
Hazards | |
MSDS | External MSDS |
EU classification | Extremely flammable (F+) |
NFPA 704 | |
Supplementary data page | |
Structure and properties |
|
Thermodynamic data |
|
Spectral data | UV, IR, NMR, MS |
Related compounds | |
Related compounds | Ethane Acetylene |
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) Infobox disclaimer and references |
เอทิลีน (อังกฤษ: ethylene) เป็นฮอร์โมนพืชที่มีสภาพเป็นก๊าซที่อุณหภูมิห้อง บทบาทที่สำคัญของเอทิลีนคือควบคุมกระบวนการเติบโตที่เกี่ยวข้องกับความชรา การหลุดร่วงของใบ ดอก ผล และควบคุมการเจริญของพืชเมื่ออยู่ในสภาวะที่ไม่เหมาะสม เอทิลีนมีผลต่อต้นกล้าของถั่ว 3 ลักษณะ (Triple response) ได้แก่ ยับยั้งความสูงของลำต้น ลำต้นหนาขึ้น เพิ่มการเติบโตในแนวราบ นอกจากนั้น ยังพบว่าการแผ่ขยายของแผ่นใบถูกยับยั้ง ส่วนเหนือใบเลี้ยงมีลักษณะโค้งงอเป็นตะขอ (epicotyl hook) [2]
การสังเคราะห์เอทิลีน
แก้เกิดขึ้นได้ในส่วนต่างๆของพืชทั้งราก ลำต้น ใบ ผล เมล็ด และส่วนหัว แต่อัตราการสังเคราะห์จะขึ้นกับระยะเวลาในการเติบโต โดยเนื้อเยื่อที่แก่จะสังเคราะห์เอทิลีนมาก เช่น ผลไม้ที่กำลังสุก ในใบ ใบอ่อนจะผลิตเอทิลีนน้อยและจะเพิ่มขึ้นเมื่อใบแก่ขึ้นและจะมากที่สุดเมื่อใบใกล้ร่วง เมื่อผลไม้เริ่มสังเคราะห์เอทิลีน ปริมาณเอทิลีนที่ผลิตอยู่ในระดับ 0.1 -1 ไมโครลิตร ซึ่งสามารถกระตุ้นให้ผลไม้เพิ่มอัตราการหายใจได้ เนื้อเยื่อที่ยังไม่แก่แต่เกิดบาดแผลหรือถูกรบกวนจะปล่อยเอทิลีนออกมาได้ภายในครึ่งชั่วโมง การถูกรบกวนโดยการกรีด (ในกรณีของต้นยาง) การติดเชื้อจุลินทรีย์ น้ำท่วม อากาศเย็นจัด ล้วนแต่กระตุ้นการผลิตเอทิลีนได้ทั้งสิ้น[3]การผลิตเอทิลีนเกิดขึ้นได้ทุกส่วนในพืชชั้นสูง ทั้งที่ใบ ราก ลำต้น ดอก ผล และต้นกล้า
"การผลิตเอทิลีนถูกควบคุมด้วยปัจจัยทางพัฒนาการและสิ่งแวดล้อมจำนวนมาก ในช่วงชีวิตของพืช การผลิตเอทิลีนถูกชักนำด้วยระหว่างระยะของการเจริญเช่น การงอกของเมล็ด การสุกของผลไม้ การร่วงของใบ และ ความชราของดอกไม้ การผลิตเอทิลีนถูกชักนำด้วยกลไกภายนอกหลายประการ เช่น การเกิดบาดแผล ความกดดันทางสิ่งแวดล้อม และสารเคมี เช่น ออกซินและสารควบคุมการเจริญเติบโตอื่นๆ"[4]
เอทิลีนผลิตจากกรดอะมิโนเมทไทโอนีน โดยเปลี่ยนรูปมาเป็น S-adenosyl-L-methionine (SAM, หรือเรียก Adomet) ด้วยเอนไซม์ Met Adenosyltransferase SAM ถูกเปลี่ยนไปเป็น 1-aminocyclopropane-1-carboxylic-acid (ACC) ด้วยเอนไซม์ ACC synthase (ACS)การทำงานของ ACS เป็นตัวกำหนดอัตราการผลิตเอทิลีน การควบคุมการทำงานของเอนไซม์นี้เป็นกุญแจสำคัญในการควบคุมการผลิตเอทิลีน ขั้นตอนสุดท้ายต้องการออกซิเจนและเกี่ยวข้องกับการทำงานของเอนไซม์ ACC-oxidase (ACO) ซึ่งเดิมเรียกว่า Ethylene Forming Enzyme (EFE) การผลิตเอทิลีนถูกชักนำได้ด้วยเอทิลีนภายในและภายนอกลำต้น การสังเคราะห์ ACC เพิ่มขึ้นเมื่อมีออกซินระดับสูง โดยเฉพาะ กรดอินโดลอะซีติก และไซโตไคนิน ACC synthase ถูกยับยั้งด้วย กรดแอบไซซิก[5]
การออกฤทธิ์ทางสรีรวิทยา
แก้- การตอบสนองต่อภาวะน้ำท่วมขัง พืชที่ถูกน้ำท่วมจะสังเคราะห์เอทิลีนได้มาก ทำให้พืชเกิดการเปลี่ยนแปลงคือ ใบเหลือง เหี่ยว หุบลู่ลง แล้วหลุดร่วง
- การยับยั้งความยาวของราก ผลของเอทิลีนต่อรากจะแตกต่างกันไปในพืชแต่ละชนิด พืชที่เจริญในดินที่ระบายอากาศได้ดี จะผลิตเอทิลีนจำนวนน้อย และจะแสดงผลการอย่างชัดเจนเมื่อได้รับเอทิลีนจากภายนอก ส่วนพืชที่เจริญในพื้นที่ชุ่มน้ำ เช่น ข้าว รากพืชจะผลิตเอทิลีนในปริมาณที่สูงกว่า และทนต่อการได้รับเอทิลีนจากภายนอกน้อยกว่า [6]
- การยืดขยายความยาวของลำต้น เอทิลีนยับยั้งการยืดยาวของลำต้น ทำให้อ้วนหนาขึ้น พบมากในพืชใบเลี้ยงคู่ ส่วนยอดของลำต้นจะโค้งงอเป็นตะขอ [7]
- ผลต่อการเจริญของกิ่งและใบ เอทิลีนกดการเจริญของกิ่งและใบ โดยเฉพาะบริเวณปล้อง เอทิลีนมีส่วนในการกระตุ้นการเกิดของใบ แต่เมื่อเกิดใบขึ้นแล้วจะยับยั้งการแผ่ขยายของใบ (Dugardeyn, and Van Der Straeten, 2008)
- ผลต่อการออกดอก เอทิลีนชักนำการออกดอกของมะม่วงและพืชวงศ์สับปะรดในขณะที่ยับยั้งการออกดอกของพืชชนิดอื่นๆ ในพืชวงศ์แตง เอทิลีนปริมาณสูงส่งเสริมการเจริญของดอกเพศเมีย
- ทำให้กลีบดอกร่วงหลังจากการปฏิสนธิ โดยการถ่ายละอองเกสรทำให้มีการสังเคราะห์เอทิลีนสูงขึ้น ซึ่งเป็นผลจากการปล่อยออกซินในขณะละอองเรณูงอก ทำให้มีการปล่อยเอทิลีนมากขึ้น
- ชักนำให้เกิดขนรากมากขึ้นด้วย [8]
- เร่งให้เกิดการสุกในแอปเปิล กล้วย มะม่วง แคนตาลูบและมะเขือเทศ โดยจะเพิ่มการผลิตเอทิลีนในระยะที่แก่เต็มที่แต่ยังเป็นสีเขียวอยู่ การเพิ่มขึ้นของเอทิลีนทำให้มีอัตราการหายใจเพิ่มขึ้น คลอโรฟิลล์สลายตัว การสร้างสารสี รส และกลิ่น การอ่อนตัวลงของเนื้อเยื่อ และเตรียมพร้อมสำหรับการหลุดร่วง [9]
- เอทิลีนถูกผลิตมากขึ้นเมื่อพืชติดเชื้อ เป็นไปได้ว่าเอทิลีนยับยั้งการกระจายตัวของเชื้อโรคโดยกระตุ้นให้ชิ้นส่วนนั้นของพืชหลุดร่วงไป[10]
อ้างอิง
แก้- ↑ Record of Ethylene in the GESTIS Substance Database of the Institute for Occupational Safety and Health, accessed on 25 October 2007.
- ↑ วันทนี สว่างอารมณ์ บทความนี้ไม่มีความน่าเชื่อถือ, 2542
- ↑ วันทนี สว่างอารมณ์
- ↑ Yang, S. F., and Hoffman N. E. (1984). "Ethylene biosynthesis and its regulation in higher plants". Ann. Rev. Plant Physiol. 35: 155–89. doi:10.1146/annurev.pp.35.060184.001103.
{{cite journal}}
: CS1 maint: multiple names: authors list (ลิงก์) - ↑ Amy M. Rocklin, Keisuke Kato, Hung-wen Liu, Lawrence Que, Jr., John D. Lipscomb "Mechanistic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: single turnover reaction" J Biol Inorg Chem (2004) volume 9, pp. 171–182. doi:10.1007/s00775-003-0510-3
- ↑ Dugardeyn, and Van Der Straeten, 2008
- ↑ Dugardeyn, and Van Der Straeten, 2008
- ↑ Dugardeyn, and Van Der Straeten, 2008
- ↑ Bleecker and Kende, 2000
- ↑ Bleecker and Kende, 2000
- วันทนี สว่างอารมณ์. 2542. การเจริญและการเติบโตของพืช. พิมพ์ครั้งที่ 2. กรุงเทพฯ: มหาวิทยาลัยราชภัฏบ้านสมเด็จเจ้าพระยา
- Bleecker, A.B., and Kende, H., 2000. Ethylene: A gaseous signal molecule in plants. Annual Review of Cell Developmental Biology. 16, 1-18
- Dugardeyn, J., and Van Der Straeten, D. 2008. Ethylene: Fine-tuning plant growth and development by stimulation and inhibition of elongation. Plant Science, 175, 59 -70
-0-