ทอรัส (เรขาคณิต)

"torus" เปลี่ยนทางมาที่นี่ สำหรับความหมายอื่น ดูที่ ทอรัส
ทอรัส

ทอรัส หรือ โทรัส (อังกฤษ: torus, พหูพจน์: tori) หรือ ทรงห่วงยาง คือผิวของการหมุนรอบชนิดหนึ่ง สร้างขึ้นจากการหมุนรูปวงกลมในปริภูมิสามมิติ รอบแกนเส้นตรงที่อยู่ในระนาบเดียวกันกับรูปวงกลม แต่ไม่ได้สัมผัสหรือตัดกับรูปวงกลม ตัวอย่างของวัตถุที่มีพื้นผิวอย่างทอรัสเช่น โดนัท และยางในของรถยนต์ (ห่วงยาง) ทรงตันหรือที่ว่างซึ่งบรรจุอยู่ภายในพื้นผิวจะเรียกว่า ทอรอยด์ (toroid)

รูปวงกลมที่หมุนรอบคอร์ด (เส้นตรงที่ตัดรูปวงกลม) อาจถูกเรียกว่าทอรัสในบางบริบท ซึ่งไม่ใช่การใช้งานโดยปกติในทางคณิตศาสตร์ รูปร่างที่เกิดขึ้นจากรูปวงกลมที่หมุนรอบคอร์ดจะมีลักษณะคล้ายหมอนกลมที่บุ๋มตรงกลาง ซึ่งคำว่า torus ในภาษาละตินแปลว่าหมอนนั่นเอง

ในทางเรขาคณิตแก้ไข

พื้นผิวทอรัสสามารถนิยามได้ด้วยสมการอิงตัวแปรเสริมดังนี้

 
 
 

เมื่อ

  • u, v มีค่าอยู่ในช่วง [0, 2π]
  • R คือระยะจากจุดศูนย์กลางในทอรอยด์ ไปยังจุดศูนย์กลางของทอรัส
  • r คือระยะจากจุดศูนย์กลางในทอรอยด์ ไปตั้งฉากกับพื้นผิว (รัศมีของทอรอยด์)

ส่วนสมการในพิกัดคาร์ทีเซียนของทอรัสที่มีแกน z เป็นแกนหมุนคือ

 

ซึ่งเมื่อลดรูปรากที่สอง จะทำให้เกิดเป็นสมการกำลังสี่ดังนี้

 

พื้นที่ผิวและปริมาตรภายในของทอรัส สามารถคำนวณได้จาก

 
 

สูตรเหล่านี้เหมือนกับสูตรพื้นที่ผิวข้างและปริมาตรของทรงกระบอกที่มีความยาว 2πR และมีรัศมี r ซึ่งสามารถสร้างได้จากการตัดทอรอยด์ออกข้างหนึ่งตามแนวขวาง แล้วดึงออกให้เป็นทรงกระบอกแนวตรง โดยให้มีความยาวเท่ากับเส้นรอบวงที่ลากผ่านจุดศูนย์กลางในทอรอยด์ พื้นที่ผิวและปริมาตรที่หายไปของผิวโค้งด้านใน จะเท่ากับพื้นที่ผิวและปริมาตรส่วนเกินของผิวโค้งด้านนอกอย่างพอดี

ในทางทอพอโลยีแก้ไข

 
ทอรัสคือผลคูณของรูปวงกลมสองวง

ทอรัสในทางทอพอโลยี คือผิวปิดที่นิยามโดยผลคูณของรูปวงกลมสองวง S1 × S1 หรืออาจมองได้ว่าทอรัสวางตัวอยู่ใน C2 และเป็นเซตย่อยของทรงกลมสี่มิติ (3-sphere) S3 ที่มีรัศมี √2 ทอรัสในลักษณะนี้มักจะเรียกว่า คลิฟฟอร์ดทอรัส (Clifford torus) ในความเป็นจริงแล้ว S3 ถูกบรรจุเติมเต็มด้วยกลุ่มของทอรัสเป็นโครงข่าย ซึ่งเป็นข้อเท็จจริงที่สำคัญในการศึกษา S3 ที่เป็นมัดเส้นใย (fiber bundle) บน S2 (นั่นคือ มัดเส้นใยฮอปฟ์ Hopf bundle)