ลำดับเลขคณิต
ในทางคณิตศาสตร์ ลำดับเลขคณิต (อังกฤษ: arithmetic progression, arithmetic sequence) คือลำดับของจำนวนซึ่งผลต่างของสมาชิกสองตัวใด ๆ ที่อยู่ติดกันในลำดับเป็นค่าคงตัวเสมอ เรียกค่าคงตัวนั้นว่า ผลต่างร่วม (common difference) ตัวอย่างเช่น ลำดับ 3, 5, 7, 9, 11, 13, ... เป็นลำดับเลขคณิตที่มีผลต่างร่วมเท่ากับ 2
ถ้าหากพจน์เริ่มต้นของลำดับเลขคณิตลำดับหนึ่งคือ a1 และมีผลต่างร่วมของสมาชิกที่อยู่ติดกันเท่ากับ d แล้วพจน์ที่ n ของลำดับนี้คือ
หรือในกรณีทั่วไป จะได้
หรือเขียนได้ด้วยรูปแบบความสัมพันธ์เวียนเกิด
ผลรวม
แก้2 | + | 5 | + | 8 | + | 11 | + | 14 | = | 40 |
14 | + | 11 | + | 8 | + | 5 | + | 2 | = | 40 |
16 | + | 16 | + | 16 | + | 16 | + | 16 | = | 80 |
ผลรวมของสมาชิกในลำดับเลขคณิต เรียกว่า อนุกรมเลขคณิต (อังกฤษ: arithmetic series) ตัวอย่างเช่น พิจารณาผลรวม
ผมรวมของลำดับเลขคณิตข้างต้นสามารถหาได้อย่างรวดเร็ว โดยให้ n แทนจำนวนพจน์ทั้งหมด (ในกรณีนี้คือ 5) แล้วคูณด้วยผลบวกของพจน์แรกและพจน์สุดท้ายในลำดับเลขคณิต (ในกรณีนี้คือ 2 + 14 = 16) และสุดท้ายหารด้วย 2:
ในกรณีนี้จะได้ค่าของผลรวมคือ
สูตรนี้ใช้ได้สำหรับทุกลำดับเลขคณิตที่มีพจน์แรกและพจน์สุดท้ายคือ และ ใด ๆ
การพิสูจน์
แก้อนุกรมข้างต้นสามารถเขียนในรูปที่สมมูลกันได้สองแบบ ได้แก่
บวกสองสมการข้างต้นเข้าด้วยกัน ทุกพจน์ที่เกี่ยวข้องกับ d จะหายไป และเหลือเพียง
จัดรูปแบบใหม่ และในเมื่อเราทราบแล้วว่า ดังนั้นเราจะได้
ผลคูณ
แก้ผลคูณของสมาชิกในลำดับเลขคณิต โดยเริ่มตั้งแต่พจน์ a1 ไปถึง an ซึ่งมีผลต่างร่วมเท่ากับ d สามารถคำนวณได้จากสูตร
โดยที่สัญลักษณ์ หมายถึงผลคูณลำดับเพิ่ม (rising sequential product) และ แทนฟังก์ชันแกมมา อย่างไรก็ตามสูตรนี้จะใช้งานไม่ได้เมื่อ เป็นจำนวนเต็มลบหรือศูนย์
นี่เป็นรูปแบบทั่วไป ซึ่งเกิดขึ้นจากการคูณสมาชิกของลำดับเลขคณิต 1 × 2 × ... × n ที่ได้นิยามไว้แล้วในแฟกทอเรียล n! ดังนั้นผลคูณของลำดับนี้
จะมีค่าเท่ากับ
โดยที่ m และ n เป็นจำนวนเต็มบวก
อ้างอิง
แก้- Sigler, Laurence E. (trans.) (2002). Fibonacci's Liber Abaci. Springer-Verlag. pp. 259–260. ISBN 0-387-95419-8.