พีชคณิตซิกมา

ในทางคณิตศาสตร์ พีชคณิตซิกมา หรือ ซิกมาแอลจีบรา หรือ ซิกมาฟิลด์ (สัญกรณ์ที่นิยมใช้: σ-algebra) ที่นิยามบนเซต X คือ สับเซตของพาวเวอร์เซตของ X ที่มีเซตว่างเป็นสมาชิก และมีคุณสมบัติปิดภายใต้ คอมพลีเมนต์ และการยูเนียนแบบนับได้. พีชคณิตซิกมาเป็นโครงสร้างทางคณิตศาสตร์ที่สำคัญที่ใช้มากในคณิตวิเคราะห์และทฤษฎีความน่าจะเป็น.

นิยามทางคณิตศาสตร์แก้ไข

กำหนด  , เราจะกล่าวว่า   เป็นพีชคณิตซิกมาบน   ก็ต่อเมื่อ   มีคุณสมบัติต่อไปนี้

  1.  
  2. ถ้า   แล้ว,   ด้วย
  3. ถ้า   แล้ว   ด้วย

หมายเหตุแก้ไข

  1. การจะนิยามพีชคณิตซิกมา ต้องกำหนดเสมอว่านิยามบนเซตใด (เช่น   ในตัวอย่างข้างบน) มิฉะนั้นจะไม่มีความหมายในทางคณิตศาสตร์.
  2. จากนิยามในข้อ 2 และ 3 เราจะได้ว่าพีชคณิตซิกมามีคุณสมบัติปิดภายใต้อินเตอร์เซกชันแบบนับได้ด้วย เนื่องจาก  
  3. ในทฤษฎีเมเชอร์นั้น สมาชิกของ   ใด ๆ จะถูกเรียกว่า เซตหาเมเชอร์ได้ และยังเรียกสัญกรณ์   ว่า ปริภูมิหาเมเชอร์ได้ (โดย ฟังก์ชันเมเชอร์ จะต้องนิยามบนปริภูมินี้ เพื่อนิยามเมเชอร์ในรูปแบบต่าง ๆ ในปริภูมิที่สามารถวัดได้นี้: ดู ทฤษฎีเมเชอร์)
  4. ในทางทฤษฎีความน่าจะเป็น มักจะนิยามปริภูมิที่สามารถหาเมเชอร์ได้ ด้วย   เนื่องจาก   มักจะใช้แทนตัวแปรสุ่ม และ   มักใช้แทนการหาอนุกรม. นอกจากนี้ยังมักเรียกพีชคณิตซิกมา ว่า ซิกมาฟิลด์ มี่ที่มาจาก ฟิลด์ของเซต และสัญกรณ์ σ (ซิกมา) ที่มักใช้แทนความหมายของการยูเนียนแบบนับได้.

???

ตัวอย่างแก้ไข

  1. กำหนด   เป็นเซตใด ๆ. เราจะได้ว่า  เป็นพีชคณิตซิกมาที่เล็กที่สุดบน  , และ   เป็นพีชคณิตซิกมาที่ใหญ่ที่สุดบน  
  2. กำหนด   ให้เป็นเซตของพีชคณิตซิกมาบน   เราจะได้ว่า   เป็นพีชคณิตซิกมาบน   ด้วย
  3. (แสดงการประยุกต์ใช้ตัวอย่าง 2.) กำหนดให้   ให้เป็นเซตของพีชคณิตซิกมาทั้งหมดที่มีเซตเปิดเป็นสมาชิก และนิยามบน   ซึ่งเป็นปริภูมิทอพอโลยีใด ๆ เราจะเรียก   ว่า พีชคณิตซิกมาของโบเรล (Borel σ-algebra) ซึ่งเป็นหนึ่งในพีชคณิตซิกมาที่สำคัญและพบเจอบ่อยที่สุด. สังเกตว่า พีชคณิตซิกมาของโบเรล นี้เป็นพีชคณิตซิกมาที่เล็กที่สุด ที่มีเซตเปิดเป็นสมาชิก (เนื่องจากเกิดจากอินเตอร์เซกชันของพีชคณิตซิกมาทุกรูปแบบที่มีเซตเปิดเป็นสมาชิก). เรามักเรียก พีชคณิตซิกมาของโบเรล ว่าพีชคณิตซิกมาที่สร้างจากเซตเปิด.
  4. ในปริภูมิยุคลิด   อองรี เลอเบ็กได้กำหนดพีชคณิตซิกมาที่สำคัญมากเพื่อใช้ในเมเชอร์ ความยาว พื้นที่ ปริมาตร ฯลฯ ในทฤษฎีปริพันธ์ของเลอเบ็ก นั่นคือ พีชคณิตซิกมาของเลอเบ็ก โดยมี พีชคณิตซิกมาของโบเรล เป็นสับเซต. สมาชิกในพีชคณิตซิกมาชนิดนี้เรียกว่า เซตที่สามารถวัดได้แบบเลอเบ็ก. โดยในทฤษฎีปริพันธ์บนปริภูมิยุคลิด พีชคณิตซิกมานี้สำคัญมาก ถึงขนาดที่ว่านักคณิตศาสตร์หลายท่านใช้คำว่า เซตที่สามารถวัดได้ แทน เซตที่สามารถวัดได้แบบเลอเบ็ก เลยทีเดียว.

ดูเพิ่มแก้ไข