ผลต่างระหว่างรุ่นของ "กรดไนตริก"

เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
บรรทัด 60:
{{รายการอ้างอิง}}
 
{{สารประกอบไฮโดรเจน}}{{เรียงลำดับ|นไตริก}}
 
{{เรียงลำดับ|นไตริก}}
'''กรดไนตริก (Nitric acid) หรือกรดดินประสิว'''
{| class="wikitable"
|สูตรทางเคมี
|HNO<sub>3</sub>
|-
|น้ำหนักโมเลกุล
|63.012 กรัมต่อโมล
|-
|ลักษณะทางกายภาพ
|ใส,ของเหลวไม่มีสี
|-
|ความหนาแน่น
|1.51 กรัม/ซ.ม.³, ของเหลวไม่มีสี
|-
|จุดหลอมเหลว
|<nowiki>-42 °C, 231 K, -44 °F</nowiki>
|-
|จุดเดือด
|83 °C, 356 K, 181 °F (ที่กรดบริสุทธิ์. สารละลาย 68%เดือดที่ 120.5°C)
|-
|ความสามารถในการละลายน้ำ
|ผสมกันได้ดี
|}
กรดไนตริก (HNO<sub>3</sub>), หรือที่ชาวบ้านทั่วไปเรียกว่ากรดดินประสิว เป็นกรดที่มีอันตรายมาก หากสัมผัสจะทำให้เกิดแผลไหม้ขั้นรุนแรง กรดไนตริกนี้ ค้นพบโดยการสังเคราะห์ โดย Muslim alchemist Jabir ibn Hayyan.ประมาณ ค.ศ.800
 
กรดบริสุทธิ์ จะใส ไร้สี หากเก็บไว้นานจะมีสีเหลือง เนื่องจากมีส่วนประกอบของ ออกไซโของไนโตรเจน หากกรดมีความเข้มข้นสูงเกินกว่า 86% จะมีไอระเหยของกรดขึ้นมา ไอของกรดที่ระเหยออกมาจะเป็นมีขาว หรืออาจเป็นสีแดงขึ้นอยู่กับความเข้มข้นของไนโตรเจนไดออกไซด์ที่เกิดขึ้น
 
คุณสมบัติ
 
กรดไนตริกบริสุทธ์ 100% (ปราศจากน้ำ) จะเป็นของเหลวที่มีความหนาแน่น 1,552 กิโลกรัม/ลูกบาศก์เมตร และจะเป็นของแข็งที่อุณหภูมิ -42 °C ลูกบาศก์ โดยจะเป็นผลึกสีขาว และจะเดือดที่อุณหภูมิ 83 °C แต่ก็สามารถเดือดในที่ ที่มีแสงสว่าง ทั้ง ๆ ที่อยู่ในอุณหภูมิห้อง จะมีการสลายตัวในรูปแบบไนโตรเจนไดออกไซด์ ตามปฏิกิริยา ดังนี้
 
4HNO<sub>3</sub> → 2H<sub>2</sub>O + 4NO<sub>2</sub> + O<sub>2</sub> (72°C)
 
นั่นหมายความว่า กรดไนตริกบริสุทธิ์ที่ปราศจากน้ำเจือปน ความเก็บไว้ที่อุณหภูมิต่ำกว่า 0 °C เพื่อป้องกันการสลายตัว ไนโตรเจนไดออกไซด์ (NO<sub>2</sub>) ที่ละลายกลับเข้าไปที่กรดไนตริกจะมีสีเหลือง หรือเป็นสีแดงที่อุณหภูมิสูง ในขณะที่กรดไนตริกบริสุทธิ์ จะให้ไอสีขาวแพร่กระจายในอากาศ ส่วนกรดที่มีไนโตรเจนไดออกไซด์ละลายอยู่จะให้ไอสีแดงอมน้ำตาล
 
กรดไนตริกสามารถละลายในน้ำได้ทุกอัตราส่วน  ที่ความเข้มข้น 68% HNO<sub>3</sub> จะเป็นสารละลายอะซีโอโพรพ ''(ของเหลวผสมที่มีจุดเดือดสูงสุดและต่ำสุดที่ สามารถกลั่นออกโดยไม่มีการสลายตัวและเป็นสัดส่วนที่แน่นอน เช่น ไอโซโพรพิลแอลกอฮอล์กับน้ำ)'' ซึ่งที่ความเข้มข้น 68% นี้ กรดจะเดือดที่อุณหภูมิ 120.5 °C ''(ที่ความกดดันชั้นบรรยากาศ 1 atm)'' กรดสามารถอยู่ในรูปของแข็งไฮเดรต ''(สารประกอบที่มีโมเลกุลของน้ำอยู่ด้วย)'' ได้สองรูปแบบคือ โมโนไฮเดรต ''(monohydrate [HNO<sub>3</sub>''·''H<sub>2</sub>O])'' และ ไตรไฮเดรต''(trihydrate [HNO<sub>3</sub>''·''3H<sub>2</sub>O])''
 
ไนโตรเจนออกไซด์ (NO<sub>x</sub>) สามารถละลายในกรดไนตริกได้  ซึ่งจะละลายได้มากน้อยเพียงได้ขึ้นอยู่กับ ความเข้มข้นของออกไซด์  รวมถึงความดันไอที่อยู่เหนือของเหลว อุณหภูมิ ซึ่งจะแสดงออกเป็นสีต่าง ๆ กันตามที่ได้กล่าวมาแล้ว
 
คุณสมบัติทางกรด
 
เช่นเดียวกับกรดทั่วไป กรดไนตริกเมื่อทำปฏิกิริยากับด่าง ออกไซด์พื้นฐาน และคาร์โบเนตท์ ให้สารประกอบในรูปของเกลือ  ตัวอย่างเช่น แอมโมเนียมไนเตรด ด้วยธรรมชาติของการออกซิเดชั่น กรดไนตริกจะไม่ยอมปล่อยโปรตอนของมัน ''(นั่นคือไม่ปล่อยอะตอมของไฮโดรเจนออกไป)'' เมื่อทำปฏิกิริยากับโลหะและได้เกลือซึ่งจะมีสถานะออกซิไดซ์ที่สูงขึ้น จึงทำให้มีการกัดกร่อนที่รุนแรงกับโลหะ และควรใช้งานอย่างระมัดระวังเมื่อทำงานใกล้โลหะหรืออัลลอยส์
 
กรดไนตริกมี ค่าคงที่สมดุลของการแตกตัวของเบสอ่อน ''(acid dissociation constant [pK<sub>a</sub>]) −''1.4 เมื่อละลายในน้ำที่ 93% ที่ 0.1 โมลต่อลิตร จะมีการแตกตัวของไอออนเป็น ไนเตรดไอออน [NO<sub>3</sub><sup>-</sup>] และไนเตรตโปรตอน ซึ่งรู้จักในชื่อ ไฮโดรเนียมไอออน H<sub>3</sub>O<sup>+</sup>.
 
HNO<sub>3</sub> + H<sub>2</sub>O → H<sub>3</sub>O<sup>+</sup> + NO<sub>3</sub><sup>-</sup>
 
ปฏิกิริยากับโลหะ
 
กรดไนตริกมีสามารถสูงในการทำออกซิไดซ์สูงมาก สามารถทำปฏิกิริยากับสารอินทรีย์หลายชนิด ปฏิกิริยารุนแรงจนสามารถระเบิดได้ ทั้งนี้ขึ้นอยู่กับความเข้มข้นของกรด อุณหภูมิ  และตัวลดออกซิเจน''(ในปฏิกิริยาที่มีออกซิเจนเกี่ยวข้อง)'' ที่เกี่ยวข้อง ผลของปฏิกิริยาที่ได้มีหลากหลาย  ปฏิกิริยาสามารถเกิดขึ้นได้กับโลหะแทบทุกชนิด ยกเว้นตระกูลโลหะมีค่า (ทองคำ,เงิน,เพลตตินั่ม,พลาลาเดียม,รูธีเนี่ยม,โรเดี่ยม,ออสเมี่ยม,อิริเดี่ยม) และโลหะผสมบางชนิด (อัลลอย)  ปฏิกิริยารีแอคชั่นที่เกิดขึ้นกับ'''กรดเข้มข้น'''จะมีก๊าซไนโตรเจนไดออกไซด์ขึ้น (NO<sub>2</sub>).
 
Cu + 4HNO<sub>3</sub> → Cu(NO<sub>3</sub>)<sub>2</sub> + 2NO<sub>2</sub> + 2H<sub>2</sub>O
 
คุณสมบัติทางกรด เมื่อเป็น'''กรดเจือจาง''' เมื่อทำปฏิกิริยา จะเกิดก๊าซไนโตรเจนออกไซด์เกิดขึ้น (NO).
 
3Cu + 8HNO<sub>3</sub> → 3Cu(NO<sub>3</sub>)<sub>2</sub> + 2NO + 4H<sub>2</sub>O
 
เมื่อกรดไนตริกทำตัวเป็นตัวเร่งปฏิกิริยาออกซิไดซิ่ง จะเกิดก๊าซไฮโดรเจนขึ้น ,เมื่อใช้กรดไนตริกเจือจาง ทำปฏิกิริยากับ แมกนีเซียม(Mg) หรือ แมงกานีส(Mn) หรือ แคลเซียม (Ca) โดยทำปฏิกิริยาที่อุณหภูมิต่ำ (เย็น) จะใช้ก๊าซไฮโดรเจน
 
Mg<sub>(s)</sub> + 2HNO<sub>3 (aq)</sub> →  Mg(NO<sub>3</sub>)<sub>2 (aq)</sub> + H<sub>2 (g)</sub>
 
การสร้างฟิล์มป้องกัน (Passivation)
 
โครเมี่ยม ,เหล็ก และ อลูมิเนี่ยม สามารถละลายได้อย่างรวดเร็ว โดยกรดไนตริกเจือจาง , กรดเข้มข้นจะสร้างโลหะออกไซด์ ซึ่งจะป้องกันโลหะจากการเกิดออกซิเดชั่นในอนาคต กระบวนการนี้เรียกว่าการสร้างฟิล์มป้องกัน (Passivation)
 
 
ปฏิกิริยากับอโลหะ
 
ปฏิกิริยากับอโลหะ ยังเว้นกับซิลิคอนและกลุ่มฮาโลเจน โดยปกติจะเกิดปฏิกิริยารุนแรงซึ่งจะให้ก๊าซ ไนโตรเจนไดออกไซด์เมื่อใช้กรดเข้มข้น และก๊าวไนโตรเจนออกไซด์เมื่อใช้กรดเจือจาง
 
C + 4HNO<sub>3</sub> → CO<sub>2</sub> + 4NO<sub>2</sub> + 2H<sub>2</sub>O
 
หรือ
 
3C + 4HNO<sub>3</sub> → 3CO<sub>2</sub> + 4NO + 2H<sub>2</sub>O
 
ไอกรดไนตริกสีขาว เราเรียกว่า 100% กรดไนตริกหรือ WFNA''(White fuming nitric acid)'' ใกล้เคียงกับ แอลไฮดัสซ์ไนตริก ''(กรดไนตริกที่ไม่มีส่วนผสมของน้ำอยู่เลย)'' ไอกรดไนตริกสีขาวมีส่วนประกอบของน้ำไม่เกิน 2% และก๊าซไนโตรเจนไดออกไซด์''(NO<sub>2</sub>)'' ไม่เกิน 0.5%
 
ไอกรดไนตริกสีแดง หรือ RFNA ''(Red fuming nitric acid)'', ประกอบไปด้วยก๊าซไนโตรเจนไดออกไซด์''(NO<sub>2</sub>)'' จำนวนหนาแน่นมาก โดยมีส่วนประกอบของก๊าซไนโตรเจนไดออกไซด์''(NO<sub>2</sub>)'' ไม่เกิน17% และอีกสูตรหนึ่งมีส่วนประกอบของก๊าซไนโตรเจนไดออกไซด์''(NO<sub>2</sub>)'' ไม่เกิน 13%
 
เราสามารถยับยั้งการเกิดไอกรดไนตริก (ทั้ง IWFNA และ IRFNA) โดยการเติม ไฮโดรเจนฟลูออไรด์ (HF) 0.6 to 0.7% ลงในกรดไนตริก ฟลูออไรด์ที่ใส่เพื่อเพิ่มการป้องกันการกัดกร่อนของถังโลหะ (ฟลูออไรด์จะสร้าง ชั้นเมทัลฟลูออไรด์เคลือบผิวป้องกันโลหะ
 
การใช้งานในเชิงอุตสาหกรรม
 
กรดไนตริกสร้างขึ้นโดยการผสมก๊าซไนโตรเจนไดออกไซด์กับน้ำ ในบรรยากาศที่เต็มไปด้วยออกซิเจน จะเกิดปฏิกิริยารีแอคชั่น ออกซิไดซ์ เป็นกรดไนตรัส (HNO<sub>2</sub>) และกรดไนตริก (HNO<sub>3</sub>) ดังสมการ
 
2NO<sub>2</sub> + H<sub>2</sub>O → HNO<sub>2</sub> + HNO<sub>3</sub>
 
2.ไนโตรเจนไดออกไซด์ + น้ำ → กรดไนตรัส+กรดไนตริก
 
กรดไนตรัสสามารถสลายตัวเป็นดังนี้
 
3HNO<sub>2</sub> →  HNO<sub>3</sub> + 2NO + H<sub>2</sub>O
 
3.กรดไนตรัส →  กรดไนตริก+ ไนตริกออกไซด์ + น้ำ)
 
ไนตริกออกไซด์ จะออกซิไดซ์กับไนโตรเจนไดออกไซด์  และทำปฏิกิริยากับน้ำอีกครั้ง กลายเป็นกรดไนตริก:
 
4NO + 3O<sub>2</sub> + 2H<sub>2</sub>O → 4HNO<sub>3</sub>
 
(nitric oxide + oxygen + water → nitric acid).
 
กรดไนตริกเจือจางสามารถทำให้เข้มข้นได้โดยการกลั่นจนมีความเข้มข้นกรดที่ 68% ณ จุดนี้ ส่วนผสมอะซีโอโทรปิค ''(ของเหลวผสมที่มีจุดเดือดสูงสุดและต่ำสุดที่ สามารถกลั่นออกโดยไม่มีการสลายตัวและเป็นสัดส่วนที่แน่นอน)''ประกอบด้วยน้ำ 32% การทำให้เข้มข้นมากกว่านี้ต้องอาศัยการกลั่นกับกรดซัลฟูริก ซึ่งทำหน้าที่เป็นสารดักจับน้ำ (dehydrating agent) ในห้องปฏิบัติการจะกลั่นโดยใช้วัสดุที่เป็นแก้วทั้งหมด และลดแรงดันเพื่อป้องกันการสลายตัวของกรด
 
ในการใช้งานในเชิงพาณิชย์ จะใช้สารละลายกรดที่มีความเข้มข้นของกรดไนตริกระหว่าง 52% ถึง 68% การผลิตในเชิงพาณิชย์ใช้ขบวนการที่เรียกว่า Ostwald ตามชื่อของ Wilhelm Ostwald.
 
กรดยังสามารถสังเคราะห์ได้โดยการออกซิไดซ์แอมโมเนีย ผลผลิตที่ได้จะถูกเจือจางโดยน้ำและเป็นส่วนหนึ่งของปฏิกิริยาเคมี อย่างไรก็ตามวิธีการนี้สำคัญในการผลิต แอมโมเนียมไนเตรด จากสารตั้งต้นแอมโมเนียโดยวิธีการของ Haber เพราะว่าผลิตผลสุดท้ายสามารถสร้างก๊าซไนโตรเจน ก๊าซไฮโดรเจน และออกซิเจน สำหรับจัดจำหน่าย
 
การสังเคราะห์ในห้องปฏิบัติการ
 
ในห้องปฏิบัติการ กรดไนตริกสามารถสร้างได้จาก คอปเปอร์ไอออนทูไนเตรด (copper(II) nitrate) หรือการเกิดปฏิกิริยาเคมีระหว่าง โปแตสเซียมไนเตรด(KNO<sub>3</sub>) กับ กรดซัลฟูริกความเข้มข้น 96% (H<sub>2</sub>SO<sub>4</sub>) (โดยทั้งสองมีน้ำหนักเท่า ๆ กัน) และกลั่นที่อุณหภูมิ 83 °C ซึ่งเป็นจุดเดือดของกรดไนตริก จนกระทั่งเหลือแต่ผลึกสีขาวของโปรแตสเซียมไฮโดรเจนซัลเฟต(KHSO<sub>4</sub>), ไอของกรดไนตริกสีแดงที่ได้มาอาจเปลี่ยนเป้นไอสีขาวของกรดไนตริก
 
H<sub>2</sub>SO<sub>4</sub> + KNO<sub>3</sub> → KHSO<sub>4</sub> + HNO<sub>3</sub>
 
ก๊าซ NO<sub>x</sub> สามารถกำจัดได้โดยการลดความดันลงที่อุณหภูมิห้อง (10-30 นาที ที่ 200 มิลลิเมตรปรอท หรือ 27 กิโลปาสคาล) จะให้ไอกรดไนตริกสีขาว โดยขบวนการนี้สามารถทำได้ทั้งลดความดันและอุณหภูมิในคราวเดียวกัน
 
กรดไนตริกในห้องปฏิบัติการ
 
IWFNA ถูกใช้เป็นตัวเร่งปฏิกิริยาออกซิไดซ์ในเชื้อเพลิงเหลวของจรวด IRFNA เป็น 1 ใน 3 ขององค์ประกอบของเชื้อเพลิงเหลว สำหรับจรวดทำลาย BOMARC
 
สารละลายผสมระหว่างกรดไนตริกกับแอลกอฮอลล์ (Nital) ถูกใช้ในขบวนการกัดผิวโลหะกำจัดรอยขีด (reveal the microstructure)
 
ในเชิงพาณิชย์มีการใช้ส่วนผสมน้ำกับกรดไนตริกความเข้มข้น 5-30% และกรดฟอสฟอริค 15-40% เพื่อใช้เป็นน้ำยาทำความสะอาดเครื่องใช้ในครัวเรือน โดยสามารถกำจัดคราบของแคลเซียมและแมกนีเซียม หรือตะกรันที่เกิดจากการใช้น้ำกระด้าง
 
กรดไนตริกยังถูกใช้ในขบวนการทำระเบิกที่มีไนเตรดเป็นองค์ประกอบเช่น ไนโตรกลีเซอรีน, ไตรไนโตรโทลูอีน(TNT) และ ไซโครไตรมีทีลีนไตรไนทรามีน(RDX) และแน่นอนว่าปุ๋ยอย่างแอมโมเนียมไนเตรด
 
งานไม้
 
ในความเข้มข้นต่ำ(ประมาณ 10%), กรดไนตริกใช้ในการทำให้ไม้สน หรือไม้เมเปิลดูเก่า โดยสีจะเปลี่ยนเป็นสีเทา-ทอง คล้าย ๆ กับขี้ผึ้งเก่า  และดูเป็นไม้เก่า
 
ใช้งานอื่น ๆ
 
กรดไนตตริกยังใช้ในการแยกโลหะออกจากแร่ เพราะว่าคุณสมบัติในการทำปฏิกิริยากับโลหะแทบทุกชนิด เมื่อใช้ผสมร่วมกันกับกรดไฮโดรคลอลิค  จะเป็นสารละลายกรดที่เรียกว่า Aqua Regia หรือ Royal Water ที่สามารถละลายทองคำ และแพทตินั่มได้
 
ความปลอดภัย
 
กรดไนตริกมีความสามารถในการออกซิไดซ์สูงมาก ปฏิกิริยาของกรดไนตริกกับสารประกอบเช่นไซยาไนด์, คาร์ไบด์และผงโลหะสามารถระเบิดได้ ปฏิกิริยาของกรดไนตริกกับสารประกอบสารอินทรีย์เช่น เทอร์เพนทีน (เป็นของเหลว ที่ได้จากการกลั่นเรซิ่นที่ได้จากต้นไม้ เช่นต้นสน ) ซึ่งสามารถระเบิดรุนแรงและสามารถจุดระเบิดตัวเองได้(self-igniting).
 
 
กรดไนตริกเข้มข้นสามารถกัดผิวหนังของมนุษย์ เป็นสีเหลืองเนื่องจากทำปฏิกิริยากับเจลราติน จุดคราบสีเหลืองจะเปลี่ยนสีส้มเมื่อถูกทำให้มีสภาพเป็นกลาง
[[หมวดหมู่:กรด]]
[[หมวดหมู่:สารประกอบไฮโดรเจน]]