การแจกแจงความน่าจะเป็น

ในความน่าจะเป็นและสถิติศาสตร์ การแจกแจงความน่าจะเป็นกำหนดความน่าจะเป็นให้เซตย่อยของผลลัพธ์การทดลองสุ่ม การสำรวจหรือวิธีอนุมานทางสถิติที่วัดได้ทั้งหมด ตัวอย่างการแจกแจงความน่าจะเป็นพบได้ในการทดลองที่ปริภูมิตัวอย่างไม่เป็นตัวเลข ซึ่งการแจกแจงจะเป็นการแจกแจงประเภท การทดลองที่ปริภูมิตัวอย่างเข้ารหัสด้วยตัวแปรสุ่มวิยุต ซึ่งการแจกแจงสามารถระบุได้ด้วยฟังก์ชันมวลของความน่าจะเป็น และการทดลองที่ปริภูมิตัวอย่างเข้ารหัสด้วยตัวแปรสุ่มต่อเนื่อง ซึ่งการแจกแจงสามารถเจาะจงได้ด้วยฟังก์ชันความหนาแน่นของความน่าจะเป็น การทดลองที่ซับซ้อนกว่า เช่น การทดลองที่เกี่ยวข้องกับกระบวนการสโทแคสติกที่นิยามในเวลาต่อเนื่อง อาจต้องใช้เมเชอร์ความน่าจะเป็นที่เจาะจงน้อยกว่า

ฟังก์ชันความหนาแน่นของความน่าจะเป็น

แก้

การแจกแจงความน่าจะเป็นของตัวแปรสุ่มต่อเนื่อง (Continuous Random Variable) X แสดงในรูปฟังก์ชันความหนาแน่นของความน่าจะเป็นซึ่งมีคุณสมบัติ ดังนี้

  1.  
  2.  
  3.  

สำหรับตัวแปรสุ่มต่อเนื่อง   และค่าความน่าจะเป็นจะหาได้เมื่อหาความน่าจะเป็นที่ตัวแปรสุ่มจะตกในช่วงใดช่วงหนึ่งแล้ว

 

ประเภทของการแจกแจงความน่าจะเป็น

แก้
  1. การแจกแจงแบร์นุลลี (Bernoulli Distribution)
  2. การแจกแจงทวินาม (Binomial Distribution)
  3. การแจกแจงทวินามเชิงลบ (Negative Binomial Distribution)
  4. การแจกแจงเรขาคณิต (Geometric Distribution)
  5. การแจกแจงปัวซง (Poisson Distribution)
  6. การแจกแจงเอกรูปไม่ต่อเนื่อง (Discrete Uniform Distribution)
  7. การแจกแจงอเนกนาม (Multinomial Distribution)
  8. การแจกแจงแบบหมวดหมู่ (Categorical Distribution)
  9. การแจกแจงเอกรูปต่อเนื่อง (Continuous Uniform Distribution)
  10. การแจกแจงแบบเลขชี้กำลัง (Exponential Distribution)
  11. การแจกแจงปรกติ (Normal Distribution)
  12. การแจกแจงไคกำลังสอง (Chi-Square Distribution ( ))
  13. การแจกแจงที (T Distribution)
  14. การแจกแจงเอฟ (F Distribution)
  15. การแจกแจงเบตา (Beta Distribution)
  16. การแจกแจงแกมมา (Gamma Distribution)
  17. การแจกแจงวิชาร์ต (Wishart Distribution)