การถ่ายภาพรังสีระนาบด้วยการปล่อยโพซิตรอน
โพซิตรอนอีมิสชันโทโมกราฟี (อังกฤษ: Positron emission tomography; PET)[1] หรือ การตรวจเอกซ์เรย์ด้วยโพสิตรอน[2] หรือ การถ่ายภาพรังสีจากอนุภาคโพสิตรอนหลายระบบ เป็นเทคนิคทางการแพทย์นิวเคลียร์ที่ช่วยสร้างภาพทางการแพทย์ (medical imaging) ซึ่งแสดงผลเป็นภาพสามมิติและให้ข้อมูลเกี่ยวกับกระบวนการชีวเคมีของร่างกายหรือเมตาบอลิซึม (metabolism) ที่เฉพาะเจาะจง (metabolic information) เพื่อใช้วิเคราะห์ความผิดปกติต่าง ๆ ของร่างกาย และติดตามความก้าวหน้าของการรักษาทางการแพทย์ (therapy monitoring) นอกจากนี้ยังสามารถใช้เทคนิคนี้ในการช่วยศึกษาและติดตามกระบวนการชีวเคมีที่เฉพาะเจาะจงได้อีกด้วย
หลักการแก้ไข
ถึงแม้ว่าเทคนิคนี้จะสามารถใช้เพื่อตรวจความผิดปกติของกระบวนการต่าง ๆ ในร่างกายได้อย่างเฉพาะเจาะจงและแม่นยำในระดับโมเลกุล ก่อนการเกิดโรคต่าง ๆ แต่การตรวจร่างกายด้วยวิธีนี้ได้นั้น ต้องอาศัยโมเลกุลที่ติดกับกัมมันตรังสี หรือเรียกในภาษาทางเคมีนิวเคลียร์ว่า "เรดิโอเทรเซอร์" (radiotracer) โดยโมเลกุลที่ใช้นั้นต้องมีความเฉพาะเจาะจงต่อเอนไซม์ที่ต้องการศึกษา เมื่อฉีดเรดิโอเทรเซอร์เข้าสู่ร่างกาย เทรเซอร์จะกระจายไปสู่อวัยวะหรือส่วนของร่างกายที่มีเอนไซม์ที่จับเทรเซอร์ได้ดี ส่วนของกัมมันตรังสีที่ไม่เสถียรจะสลายตัวและปลดปล่อยโพซิตรอนออกมา โพซิตรอนจะเดินทางได้ไม่กี่มิลลิเมตร (ขึ้นอยู่กับพลังงาน) จะไปชนและรวมตัวกับอิเล็กตรอน (annihilation) ได้รังสีแกมมา 2 โฟตอนที่มีพลังงาน 511 keV[3] ในทิศทางตรงกันข้าม เครื่องตรวจจับรังสีแกมมาที่รายล้อมอยู่นั้นก็จะได้รับสัญญาณนั้น ส่งไปที่คอมพิวเตอร์เพื่อประมวลผลเป็นภาพสามมิติ
การใช้งานแก้ไข
โมเลกุลแรกที่ถูกนำมาใช้เป็นเรดิโอเทรเซอร์คือ [18F]ฟลูออโรดิออกซีกลูโคส หรือ [18F]-FDG[4] ซึ่งเป็นโมเลกุลที่มีโครงสร้างคล้ายกลูโคส สามารถได้ภาพทางการแพทย์ของกระบวนการเผาผลาญกลูโคสในร่างกาย (glucose metabolism) ได้อย่างชัดเจน ซึ่งช่วยวิเคราะห์ความผิดปกติของการผิดปกติของการเผาผลาญกลูโคส เช่น ถ้าได้สัญญาณของการเผาผลาญกลูโคสที่สมองและกระเพาะปัสสาวะเท่านั้น ก็ถือได้ว่าเป็นปกติ แต่ถ้าพบที่จุดอื่นของร่างกายที่มีการเผาผลาญมากกว่าปกติ อาจสันนิษฐานได้ว่าบริเวณนั้นอาจจะเป็นเซลล์ที่เจริญเติบโตผิดปกติและอาจจะนำไปสู่มะเร็งก็เป็นได้ นอกจากนี้สำหรับผู้ป่วยที่ได้รับการรักษา อาจจะใช้วิธีนี้เพื่อติดตามความก้าวหน้าของการรักษา หรือสำหรับนักวิจัย สามารถใช้เทคนิคนี้ในการติดตามกระบวนการชีวเคมีอื่น ๆ ของร่างกายได้อีกด้วย
อ้างอิงแก้ไข
- ↑ Bailey DL, Townsend DW, Valk PE, Maisy MN (2005). Positron Emission Tomography: Basic Sciences. Secaucus, NJ: Springer-Verlag. ISBN 978-1-85233-798-8.
- ↑ บัญชีจำแนกทางสถิติระหว่างประเทศของโรคและปัญหาสุขภาพที่เกี่ยวข้อง บทที่ 18 (R90-R94).
- ↑ Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H (กุมภาพันธ์ 2013). "MRI for attenuation correction in PET: methods and challenges". Magma. 26 (1): 99–113. doi:10.1007/s10334-012-0353-4. PMC 3572388. PMID 23179594.
- ↑ Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, และคณะ (กรกฎาคม 1980). "A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection". Journal of Nuclear Medicine. 21 (7): 670–5. PMID 7391842.
แหล่งข้อมูลอื่นแก้ไข
- PET Images เก็บถาวร 2010-11-10 ที่ เวย์แบ็กแมชชีน Search MedPix (r)
- Seeing is believing: In vivo functional real-time imaging of transplanted islets using positron emission tomography (PET) (a protocol) เก็บถาวร 2009-08-23 ที่ เวย์แบ็กแมชชีน
- The nuclear medicine and molecular medicine podcast - Podcast
- Positron emmission particle tracking เก็บถาวร 2010-01-11 ที่ เวย์แบ็กแมชชีน (PEPT) - engineering analysis tool based on PET that is able to track single particles in 3D within mixing systems or fluidised beds. Developed at the University of Birmingham, UK.
บทความเกี่ยวกับแพทยศาสตร์นี้ยังเป็นโครง คุณสามารถช่วยวิกิพีเดียได้โดยการเพิ่มเติมข้อมูล ดูเพิ่มที่ สถานีย่อย:แพทยศาสตร์ |