ผลต่างระหว่างรุ่นของ "โทคาแมค"

เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
BotKung (คุย | ส่วนร่วม)
เก็บกวาดบทความด้วยบอต
Roonie.02 (คุย | ส่วนร่วม)
ไม่มีความย่อการแก้ไข
บรรทัด 32:
อุปกรณ์นี้ที่กระแส toroid ขนาดใหญ่ถูกจัดตั้งขึ้น (15 เมกะแอมป์ใน ITER) ทนทุกข์ทรมานจากปัญหาพื้นฐานของความมั่นคง. วิวัฒนาการไม่เชิงเส้นของความไม่เสถียรแบบ magnetohydrodynamical นำไปสู่การดับอย่างน่าสงสารของกระแสพลาสม่าในช่วงเวลาที่สั้นมาก, มีหน่วยเป็นมิลลิวินาที. อิเล็กตรอนพลังสูงจะถูกสร้างขึ้น (อิเล็กตรอนหนี) และการสูญเสีย ทั่วโลกของการเก็บกักได้เกิดขึ้นในที่สุด. พลังงานสูงมากถูกฝากเอาไว้บนพื้นที่ขนาดเล็ก. ปรากฏการณ์นี้เรียกว่าการหยุดชะงักที่สำคัญ.<ref>Kruger, S. E.; Schnack, D. D.; Sovinec, C. R., (2005). "Dynamics of the Major Disruption of a DIII-D Plasma". Phys. Plasmas 12, 056113. {{doi|10.1063/1.1873872}}. <http://www.scidac.gov/FES/FES_FusionGrid/pubs/kruger-phys-plasma-2005.pdf</ref> การหยุดชะงักที่สำคัญในการดำเนินงานของ tokamaks ได้เกิดขึ้นค่อนข้างบ่อยเสมอ, เป็นสองสามเปอร์เซ็นต์ของจำนวนรวมของภาพ. ในการดำเนินการอยู่ในขณะนี้ของ tokamaks, ความเสียหายมักจะมีขนาดใหญ่ แต่ไม่ค่อยน่าสงสาร. ใน tokamak ของ ITER เป็นที่คาดหวังว่า การเกิดขึ้นของจำนวนที่จำกัดของการหยุดชะงักที่สำคัญจะเกิดความเสียหายกับห้อง ที่ไม่มีความเป็นไปได้ที่จะฟื้นฟูอุปกรณ์.<ref>Wurden, G., (2011) International Workshop "MFE Roadmapping in the ITER Era", Princeton <http://advprojects.pppl.gov/Roadmapping/presentations/MFE_POSTERS/WURDEN_Disruption_RiskPOSTER.pdf></ref><ref>Baylor, L. R.; Combs, S. K.; Foust, C. R.; Jernigan, T.C.; Meitner, S. J.; Parks, P. B.; Caughman, J. B.; Fehling, D. T.; Maruyama, S.; Qualls, A. L.; Rasmussen, D. A.; Thomas, C. E., (2009). "Pellet Fuelling, ELM Pacing and Disruption Mitigation Technology Development for ITER". Nucl. Fusion 49 085013. {{doi|10.1088/0029-5515/49/8/085013}}. <http://www-pub.iaea.org/MTCD/Meetings/FEC2008/it_p6-19.pdf></ref><ref>Thornton, A. J.; Gibsonb, K. J.; Harrisona, J. R.; Kirka, A.; Lisgoc, S. W.; Lehnend, M.; Martina, R.;, Naylora, G.; Scannella, R.; Cullena, A. and MAST Team Thornton, A.,(2011). "Disruption mitigation studies on the Mega Amp Spherical Tokamak (MAST)". Journal Nucl. Mat. 415, 1, Supplement, 1, S836-S840. {{doi|10.1016/j.jnucmat.2010.10.029}}.</ref>{{dubious|date=March 2014}}{{page needed|date=March 2014}}
 
==การให้ความร้อนกับพลาสม่า==
==พลาสม่าความร้อน==
 
ในเครื่องปฏิกรณ์ฟิวชั่นที่ใช้ทำงาน, ส่วนของพลังงานที่ถูกสร้างขึ้นจะถูกใช้เพื่อรักษาอุณหภูมิของพลาสม่าเมื่อดิวเทอเรียมและทริเทียมสดถูกนำมาใช้. อย่างไรก็ตาม ในการสตาร์ทเครื่องปฏิกรณ์, ทั้งในตอนต้นหรือหลังจากปิดตัวชั่วคราว, พลาสม่าจะต้องถูกทำให้ร้อนที่อุณหภูมิในการทำงานของมันที่มากกว่า 10 kiloelectronV (กว่า 100 ล้านองศาเซลเซียส). ใน tokamak และการทดลองฟิวชั่นแม่เหล็กอื่นๆในปัจจุบัน, พลังงานฟิวชั่นที่ถูกผลิตขึ้นจะไม่เพียงพอสำหรับการรักษาระดับอุณหภูมิของพลาสม่า
 
===การให้ความร้อนแบบ ohmic===
 
เนื่องจากพลาสม่าเป็นตัวนำไฟฟ้า, มันก็เป็นไปได้ที่จะให้ความร้อนพลาสมาโดยเหนี่ยวนำกระแสให้ไหลผ่านตัวมัน; ในความเป็นจริง, กระแสเหนี่ยวนำที่จะให้ความร้อนกับพลาสมามักจะสร้างสนาม poloid เป็นส่วนใหญ่. กระแสถูกเหนี่ยวนำโดยการเพิ่มกระแสอย่างช้าๆผ่านขดลวดแม่เหล็กไฟฟ้าที่เชื่อมโยงกับพลาสม่าทอรัส: นั่นคือพลาสม่าสามารถถูกมองได้ว่าเป็นขดลวดที่สองของหม้อแปลงไฟฟ้า. นี้เป็นเนื้อแท้ของกระบวนการสร้างชีพจรเพราะกระแสผ่านขดลวดไพรมารีถูกจำกัด(ยังมีข้อจำกัดอื่นๆในชีพจรยาว). Tokamaks จึงต้องดำเนินการอย่างใดอย่างหนึ่งในระยะเวลาอันสั้นหรือพึ่งพาวิธีการอื่นในการให้ความร้อนและกระแสไดรฟ์. การให้ความร้อนโดยกระแสเหนี่ยวนำเรียกว่า ohmic (หรือต้านทาน), มันเป็นชนิดเดียวกันกับความร้อนที่เกิดขึ้นในหลอดไฟฟ้าแสงสว่างหรือในเครื่องทำความร้อนไฟฟ้า. ความร้อนที่เกิดขึ้นขึ้นอยู่กับ ความต้านทานของพลาสม่าและปริมาณของกระแสไฟฟ้าที่วิ่งผ่านตัวมัน. แต่ในขณะที่อุณหภูมิของพลาสมาที่ถูกทำให้ร้อนเพิ่มขึ้น, ความต้านทานจะลดลงและความร้อนแบบ ohmic จะมีประสิทธิผลน้อยลง. ปรากฏว่า อุณหภูมิพลาสมาสูงสุดที่สามารถบรรลุได้ด้วยความร้อนแบบ ohmic ใน tokamak เป็นถึง 20-30 ล้านองศาเซลเซียส. เพื่อให้ได้อุณหภูมิที่นิ่ง, ต้องใช้วิธีการให้ความร้อนเพิ่มเติม
 
===การฉีดลำแสงที่เป็นกลาง===
 
การฉีดลำแสงที่เป็นกลางเกี่ยวข้องกับการฉีดอะตอมพลังงานสูง (เคลื่อนที่รวดเร็ว) เข้าไปในพลาสม่าที่ถูกเก็บกักไว้ด้วยแม่เหล็กในที่ซึ่งพลาสมาถูกทำให้ร้อนแบบ ohmic. อะตอมจะแตกตัวเป็นไอออนเมื่อพวกมันเคลื่อนผ่านพลาสม่าและติดกับดักโดยสนามแม่เหล็ก. จากนั้น ไอออนพลังงานสูงจะโอนบางส่วนของพลังงานของพวกมันไปที่อนุภาคพลาสม่าในการชนซ้ำ, ซึ่งเป็นการเพิ่มอุณหภูมิของพลาสม่า
 
===การบีบอัดด้วยแม่เหล็ก===
 
ก๊าซสามารถถูกทำให้ร้อนโดยการบีบอัดอย่างฉับพลัน. ในลักษณะเดียวกับ, อุณหภูมิของพลาสมาจะเพิ่มขึ้นถ้ามีการบีบอัดอย่างรวดเร็วโดยการเพิ่มสนามแม่เหล็กที่ใช้เก็บกัก. ในระบบของ tokamak การบีบอัดนี้จะประสบความสำเร็จได้ง่ายโดยการย้ายพลาสม่าเข้าไปในภูมิภาค ของสนามแม่เหล็กที่สูงขึ้น(เช่นเข้าสู่ศูนย์กลาง). เนื่องจากการบีบอัดพลาสม่าจะนำไอออนเข้ามาใกล้กัน, กระบวนการมีประโยชน์เพิ่มเติมของการอำนวยความสะดวกในความสำเร็จของความหนาแน่นที่จำเป็นสำหรับเครื่องปฏิกรณ์ฟิวชั่น
 
[[Image:Gyrotron plateforme.jpg|thumb|ชุดหลอด hyperfrequency (84 GHz และ 118 GHz) เพื่อให้ความร้อนพลาสมาโดยคลื่น อิเล็กตรอน cyclotron บน tokamak ที่มีรูปแบบแปรค่า ({{lang-en|Tokamak à Configuration Variable (TCV)}}). ด้วยความเอื้อเฟื้อจาก CRPP-EPFL, Association Suisse-Euratom.]]
 
===การให้ความร้อนด้วยคลื่นความถี่วิทยุ===
 
คลื่นแม่เหล็กไฟฟ้าความถี่สูงจะถูกสร้างโดย [[อิเล็กทรอนิกส์ ออสซิลเลเตอร์|ออสซิลเลเตอร์]] (มักจะโดย gyrotrons หรือ klystrons) ด้านนอกของทอรัส. ถ้าคลื่นมีความถี่(หรือความยาวคลื่น)ที่ถูกต้องและเกิด polarization, พลังงานของมันสามารถถูกถ่ายโอนไปยังอนุภาคที่ถูกประจุในพลาสมา, ซึ่งจะชนกับอนุภาคพลาสม่าอื่นๆ, ซึ่งจะเป็นการเพิ่มอุณหภูมิของพลาสม่าขนาดใหญ่. เทคนิคต่างๆที่มีอยู่ รวมทั้งการให้ความร้อนแบบ electron cyclotron resonance (ECRH) และ ion cyclotron resonance. พลังงานนี้จะถูกโอนโดยไมโครเวฟ
 
==การระบายความร้อน==
 
==อ้างอิง==