เปิดเมนูหลัก

การเปลี่ยนแปลง

==การประยุกต์ใช้งาน==
 
[[File:99341.jpg|thumb|พืชดอกกุหลาบที่เริ่มเป็นเซลล์ที่ปลูกในการเพาะเลี้ยงเนื้อเยื่อ]]
 
เทคโนโลยีชีวภาพมีการประยุกต์ใช้งานในสี่พื้นที่อุตสาหกรรมที่สำคัญ, ได้แก่การดูแลสุขภาพ (การแพทย์), การผลิตพืชและการเกษตร, การใช้พืชและผลิตภัณฑ์อื่นๆที่ไม่ใช่อาหาร (เช่นพลาสติกย่อยสลายแบบชีวภาพ, น้ำมันพืช, เชื้อเพลิงชีวภาพ), และการใช้งานด้านสิ่งแวดล้อม.
 
ตัวอย่างเช่น,การประยุกต์ใช้แบบหนึ่งของเทคโนโลยีชีวภาพคือการใช้ควบคุมสิ่งมีชีวิตเพื่อผลิตสินค้าเกษตรอินทรีย์ (เช่นเบียร์และผลิตภัณฑ์นม). อีกตัวอย่างหนึ่งคือการใช้เชื้อแบคทีเรียที่ปรากฏตามธรรมชาติโดยอุตสาหกรรมเหมืองแร่ในการชะล้างด้วยวิธีชีวภาพ ({{lang-en|bioleaching}}). เทคโนโลยีชีวภาพนอกจากนี้ยังใช้ในการรีไซเคิล, การบำบัดของเสีย, การทำความสะอาดสถานที่ปนเปื้อนจากกิจกรรมอุตสาหกรรม (bioremediation) และการผลิตอาวุธชีวภาพอีกด้วย.
 
ชุดของสาขาที่ได้รับการระบุว่าสาขาของเทคโนโลยีชีวภาพ; ตัวอย่างเช่น:
 
* '''ชีวสารสนเทศ''' ({{lang-en|Bioinformatics}}) เป็นสาขาสหวิทยาการที่กล่าวถึงปัญหาทางชีวภาพโดยใช้เทคนิคคอมพิวเตอร์, และทำให้องค์กรมีความรวดเร็วเช่นเดียวกับการวิเคราะห์ข้อมูลทางชีวภาพที่เป็นไปได้. สาขานี้อาจหมายถึง"ชีววิทยาคอมพิวเตอร์", และสามารถนิยามว่าเป็น "ชีววิทยาแบบแนวความคิดในแง่ของโมเลกุลแล้วประยุกต์เทคนิคด้านสารสนเทศเพื่อทำความเข้าใจและจัดระเบียบข้อมูลที่เกี่ยวข้องกับโมเลกุลเหล่านี้ในขนาดที่ใหญ่"<ref name="gerstein">Gerstein, M. "[http://www.primate.or.kr/bioinformatics/Course/Yale/intro.pdf Bioinformatics Introduction]." ''[[Yale University]].'' Retrieved on May 8, 2007.</ref>.
ชีวสารสนเทศมีบทบาทสำคัญในด้านต่างๆ, เช่นพันธุกรรมฟังก์ชั่น ({{lang-en|functional genomics}}), พันธุกรรมโครงสร้าง ({{lang-en|structural genomics}}), และพันธุกรรมโปรตีน ({{lang-en|proteomics}}), และชีวสารสนเทศยังเป็นตัวสร้างรูปแบบขององค์ประกอบสำคัญในภาคเทคโนโลยีชีวภาพและภาคเภสัชกรรมอีกด้วย.
* '''เทคโนโลยีชีวภาพสีฟ้า''' เป็นคำที่ถูกนำมาใช้เพื่ออธิบายการใช้งานทางทะเลและสัตว์น้ำของเทคโนโลยีชีวภาพ แต่การใช้งานจะค่อนข้างหายาก.
* '''เทคโนโลยีชีวภาพสีเขียว''' เป็นเทคโนโลยีชีวภาพที่ประยุกต์กับกระบวนการทางการเกษตร. ตัวอย่างหนึ่งจะเป็นการเลือกและการเพาะพันธ์ของพืชโดยวิธีการกระจายแบบไมโคร ({{lang-en|micropropagation}}). อีกตัวอย่างหนึ่งคือการออกแบบของพืชดัดแปรพันธุกรรม ({{lang=en|transgenic plant}}) เพื่อปลูกภายใต้สภาพแวดล้อมเฉพาะโดยการใช้ (หรือไม่ใช้) สารเคมี. ความหวังอย่างหนึ่งคือเทคโนโลยีชีวภาพสีเขียวอาจผลิตโซลูชั่นที่เป็นมิตรกับสิ่งแวดล้อมมากขึ้นกว่าอุตสาหกรรมเกษตรแบบดั้งเดิม. ตัวอย่างหนึ่งของเรื่องนี้ก็คือวิศวกรรมของพืชเพื่อแสดงยาฆ่าแมลง, ซึ่งจะสิ้นสุดความต้องการของแอพลิเคชันภายนอกของยาฆ่าแมลง. ตัวอย่างหนึ่งของวิศวกรรมนี้จะเป็นข้าวโพดแปลงพันธุกรรม ({{lang-en|Transgenic maize หรือ Bt corn}}). ผลิตภัณฑ์ของเทคโนโลยีชีวภาพสีเขียวเช่นนี้ในท้ายที่สุดแล้วจะเป็นมิตรต่อสิ่งแวดล้อมหรือไม่เป็นหัวข้อของการอภิปรายที่น่าสนใจมาก.
* '''เทคโนโลยีชีวภาพสีแดง''' จะประยุกต์เข้ากับกระบวนการทางการแพทย์. บางตัวอย่างก็คือการออกแบบของสิ่งมีชีวิตเพื่อผลิตยาปฏิชีวนะ, และการวิศวกรรมของการรักษาทางพันธุกรรมผ่านการยักย้ายถ่ายเททางพันธุกรรม ({{lang-en|genetic manipulation}}).
* '''เทคโนโลยีชีวภาพสีขาว''', หรือที่เรียกว่าอุตสาหกรรมเทคโนโลยีชีวภาพ, เป็นเทคโนโลยีชีวภาพที่ประยุกต์เข้ากับกระบวนการทางอุตสาหกรรม. ตัวอย่างหนึ่งคือการออกแบบของสิ่งมีชีวิตในการผลิตสารเคมีที่มีประโยชน์. อีกตัวอย่างหนึ่งคือการใช้เอนไซม์เป็นตัวเร่งปฏิกิริยาให้อุตสาหกรรมเพื่อผลิตสารเคมีที่มีค่าหรือเพื่อทำลายสารเคมีที่ก่อให้เกิดมลพิษ/อันตราย. เทคโนโลยีชีวภาพสีขาวมีแนวโน้มที่จะใช้พลังงานน้อยกว่ากระบวนการแบบดั้งเดิมที่ใช้ในการผลิตสินค้าอุตสาหกรรม {{Citation needed|date=October 2009}} http://www.bio-entrepreneur.net/Advance-definition-biotech.pdf}
 
การลงทุนและการส่งออกของเศรษฐกิจทั้งหมดของประเภทเหล่านี้ของการประยุกต์เทคโนโลยีชีวภาพจะถูกเรียกว่าเป็น "Bioeconomy".
 
===ยา===
ในสาขาเภสัชกรรม, เทคโนโลยีชีวภาพสมัยใหม่พบการประยุกต์ใช้ในด้านต่างๆเช่นการค้นพบและการผลิตยาเสพติด, pharmacogenomics, และการทดสอบทางพันธุกรรม (หรือการคัดกรองทางพันธุกรรม).
 
[[File:Microarray2.gif|thumb|ชิปขนาด microarray ของดีเอ็นเอ - บางชิปสามารถทำการทดสอบเลือดได้มากถึงล้านตัวอย่างในการทดสอบเพียงครั้งเดียว]]
 
 
Pharmacogenomics (การรวมกันของเภสัชวิทยาและพันธุกรรม) เป็นเทคโนโลยีที่วิเคราะห์ว่าสิ่งที่ได้จากพันธุกรรมมีผลต่อการตอบสนองของยาในแต่ละบุคคลเป็นอย่างไร<ref>Ermak G., Modern Science & Future Medicine (second edition), 164 p., 2013</ref>. มันเกี่ยวข้องกับอิทธิพลของการแปรเปลี่ยนทางพันธุกรรมที่มีต่อการตอบสนองของยาในผู้ป่วยโดยการเทียบเคียงการแสดงออกของยีน ({{lang-en|gene expression}}) หรือความหลากหลายแบบ nucleotide เดียว ({{lang-en|single-nucleotide polymorphism}}) กับประสิทธิภาพหรือความเป็นพิษของยา<ref name="pmid20836007">{{cite journal | author = Wang L | title = Pharmacogenomics: a systems approach | journal = Wiley Interdiscip Rev Syst Biol Med | volume = 2 | issue = 1 | pages = 3–22 | year = 2010 | pmid = 20836007 | doi = 10.1002/wsbm.42 }}</ref>. โดยการทำเช่นนั้น, pharmacogenomics มีวัตถุประสงค์เพื่อพัฒนาวิธีการที่มีเหตุผลในการเพิ่มประสิทธิภาพการรักษาด้วยยา, ที่ขึ้นกับขนืดของพันธุกรรมของผู้ป่วย, เพื่อให้แน่ใจว่าได้รับประสิทธิภาพสูงสุดด้วยผลกระทบในทางตรงกันข้ามที่น้อยที่สุด<ref name="pmid19530963">{{cite journal | author = Becquemont L | title = Pharmacogenomics of adverse drug reactions: practical applications and perspectives | journal = Pharmacogenomics | volume = 10 | issue = 6 | pages = 961–9 |date=June 2009 | pmid = 19530963 | doi = 10.2217/pgs.09.37 }}</ref>. วิธีการดังกล่าวสัญญาว่าจะให้การถือกำเนิดของ "ยาส่วนบุคคล"; ที่ยาทั้งหลายและยาผสมได้รับการปรับปรุงให้เหมาะสมกับพันธุกรรมที่ไม่ซ้ำกันของแต่ละบุคคล<ref>{{cite web|url=http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm126957.pdf|format=PDF|title=Guidance for Industry Pharmacogenomic Data Submissions|date=March 2005|publisher=[[U.S. Food and Drug Administration]]|accessdate=2008-08-27}}</ref><ref name="pmid20712531">{{cite journal | author = Squassina A, Manchia M, Manolopoulos VG, Artac M, Lappa-Manakou C, Karkabouna S, Mitropoulos K, Del Zompo M, Patrinos GP | title = Realities and expectations of pharmacogenomics and personalized medicine: impact of translating genetic knowledge into clinical practice | journal = Pharmacogenomics | volume = 11 | issue = 8 | pages = 1149–67 |date=August 2010 | pmid = 20712531 | doi = 10.2217/pgs.10.97 }}</ref>.
 
[[File:InsulinHexamer.jpg|thumb|ภาพอินซูลิน hexamers ที่สร้างจากคอมพิวเตอร์แสดงการสมมาตรสามเท่า, ไอออนของสังกะสีที่ยึดมันเข้าด้วยกัน, และสิ่งตกค้าง histidine ที่เกี่ยวข้องในการผูกพันของสังกะสี]]
 
เทคโนโลยีชีวภาพมีส่วนร่วมในการค้นพบและการผลิตของยาโมเลกุลขนาดเล็กแบบดั้งเดิมเช่นเดียวกับยาที่เป็นผลิตภัณฑ์ของเทคโนโลยีชีวภาพ - ชีวเภสัช ({{lang-en|biopharmaceutics}}). เทคโนโลยีชีวภาพสมัยใหม่สามารถนำมาใช้ในการผลิตยาที่มีอยู่ค่อนข้างง่ายและราคาถูก. ผลิตภัณฑ์ดัดแปลงพันธุกรรมตัวแรกถูกออกแบบมาเพื่อรักษาโรคของมนุษย์. เพื่อยกหนึ่งตัวอย่าง, ในปี 1978 Genentech ได้พัฒนาอินซูลิน humanized สังเคราะห์โดยการเชื่อมยีนของมันกับเวกเตอร์พลาสมิด ({{lang-en|plasmid vector}}) ที่ถูกใส่เข้าไปในแบคทีเรีย "Escherichia coli". อินซูลิน, ที่ใช้กันอย่างแพร่หลายในการรักษาโรคเบาหวาน, ได้รับการสกัดก่อนหน้านี้จากตับอ่อนของสัตว์ในโรงฆ่าสัตว์ (วัวและ/หรือหมู). แบคทีเรียดัดแปลงพันธุกรรมที่เกิดขึ้นจะช่วยในการผลิตปริมาณมหาศาลของอินซูลินสังเคราะห์เพื่อมนุษย์ที่ค่าใช้จ่ายที่ค่อนข้างต่ำ<ref>{{cite book |author=Bains, W. |title=Genetic Engineering For Almost Everybody: What Does It Do? What Will It Do? |publisher=Penguin |year=1987 |isbn=0-14-013501-4 |page=99 |url= }}</ref><ref name=USIS>U.S. Department of State International Information Programs, "Frequently Asked Questions About Biotechnology", USIS Online; available from [http://usinfo.state.gov/ei/economic_issues/biotechnology/biotech_faq.html USinfo.state.gov], accessed 13 September 2007. Cf. {{cite journal |author=Feldbaum, C. |title=Some History Should Be Repeated |journal=Science |volume=295 |page=975 |date=February 2002| pmid=11834802|doi=10.1126/science.1069614 |issue=5557 }}</ref>. เทคโนโลยีชีวภาพนอกจากนี้ยังช่วยในการรักษาที่เกิดขึ้นใหม่เช่นการรักษาด้วยยีน ({{lang-en|gene therapy}}). การประยุกต์ใช้เทคโนโลยีชีวภาพกับวิทยาศาสตร์พื้นฐาน (เช่นผ่านทางโครงการจีโนมมนุษย์) ยังได้ปรับปรุงอย่างมากในความเข้าใจของเราเกี่ยวกับชีววิทยาและเนื่องจากความรู้ทางวิทยาศาสตร์ของเราเกี่ยวกับชีววิทยาปกติและของโรคได้เพิ่มขึ้น, ความสามารถของเราในการพัฒนายาใหม่ในการรักษาโรคที่รักษาไม่หายไปก่อนหน้านี้ได้เพิ่มขึ้นเช่นกัน<ref name=USIS/>
 
การทดสอบทางพันธุกรรมช่วยในการวินิจฉัยทางพันธุกรรมของความไวต่อโรคทางกรรมพันธุ์, และยังสามารถใช้ในการกำหนดผู้เป็นบิดามารดาของเด็ก (แม่และพ่อทางพันธุกรรม) หรือโดยทั่วไปบรรพบุรุษของบุคคลนั้น. นอกเหนือจากการศึกษาโครโมโซมในระดับของยีนแต่ละบุคคล, การทดสอบทางพันธุกรรมในความหมายที่กว้างขึ้นจะรวมถึงการทดสอบทางชีวเคมีสำหรับการปรากฏตัวที่เป็นไปได้ของโรคทางพันธุกรรม, หรือรูปแบบการกลายพันธุ์ของยีนที่เกี่ยวข้องกับความเสี่ยงที่เพิ่มขึ้นของการพัฒนาความผิดปกติทางพันธุกรรม. การทดสอบทางพันธุกรรมจะระบุการเปลี่ยนแปลงในโครโมโซม, ยีน, หรือโปรตีน<ref>{{cite web|url=http://www.ghr.nlm.nih.gov/handbook/testing/genetictesting |title=What is genetic testing? - Genetics Home Reference |publisher=Ghr.nlm.nih.gov |date=2011-05-30 |accessdate=2011-06-07}}</ref>. หลายครั้ง, การทดสอบจะใช้เพื่อหาการเปลี่ยนแปลงที่เกี่ยวข้องกับความผิดปกติได้รับการถ่ายทอดมา. ผลของการทดสอบทางพันธุกรรมสามารถยืนยันหรือตัดทิ้งสภาพทางพันธุกรรมที่น่าสงสัยหรือช่วยในการกำหนดโอกาสของบุคคลในการพัฒนาหรือการหลุดพ้นความผิดปกติทางพันธุกรรม. ณ ปี 2011, หลายร้อยการทดสอบทางพันธุกรรมได้ถูกนำมาใช้<ref>{{cite web|url=http://www.nlm.nih.gov/medlineplus/genetictesting.html |title=Genetic Testing: MedlinePlus |publisher=Nlm.nih.gov |accessdate=2011-06-07}}</ref><ref>{{cite web |url=http://www.eurogentest.org/patient/public_health/info/public/unit3/DefinitionsGeneticTesting-3rdDraf18Jan07.xhtml |title=Definitions of Genetic Testing |accessdate=2008-08-10 |work=Definitions of Genetic Testing (Jorge Sequeiros and Bárbara Guimarães) |publisher=EuroGentest Network of Excellence Project |date=2008-09-11 }} {{Dead link|date=September 2010|bot=H3llBot}}</ref>. เนื่องจากการทดสอบทางพันธุกรรมอาจจะเปิดปัญหาด้านจริยธรรมหรือด้านจิตวิทยา, การทดสอบทางพันธุกรรมมักจะมาพร้อมการให้คำปรึกษาทางพันธุกรรม.
 
===การเกษตร===
 
== ดูเพิ่ม ==
2,628

การแก้ไข