เทคโนโลยีนิวเคลียร์
บทความนี้อาจต้องการตรวจสอบต้นฉบับ ในด้านไวยากรณ์ รูปแบบการเขียน การเรียบเรียง คุณภาพ หรือการสะกด คุณสามารถช่วยพัฒนาบทความได้ |
เทคโนโลยีนิวเคลียร์ (อังกฤษ: Nuclear technology) เป็นเทคโนโลยีที่เกี่ยวข้องกับการเกิดปฏิกิริยาของนิวเคลียสของอะตอม ท่ามกลางเทคโนโลยีนิวเคลียร์ที่โดดเด่น การนำไปประยุกต์ใช้จะได้แก่ เครื่องปฏิกรณ์นิวเคลียร์สำหรับโรงไฟฟ้าพลังงานนิวเคลียร์, เวชศาสตร์นิวเคลียร์เพื่อการรักษาทางการแพทย์และอาวุธนิวเคลียร์ที่ใช้ในสงคราม มีการนำเทคโนโลยีนิวเคลียร์ไปประยุกต์ใช้อย่างหลากหลายทั้งในด้านการถนอมอาหาร, การเกษตร และการอุตสาหกรรม ประโยขน์ของเทคโนโลยีนิวเคลียร์มีอยู่อย่างหลากหลายแต่โทษของมันก็มีมากเช่นกัน
ประวัติความเป็นมาและภูมิหลังทางวิทยาศาสตร์
แก้การค้นพบ
แก้บทความหลัก: ฟิสิกส์นิวเคลียร์
ปรากฏการณ์ธรรมชาติส่วนใหญ่ที่พบบนโลกมีส่วนเกี่ยวข้องกับแรงโน้มถ่วงและแม่เหล็กไฟฟ้าเท่านั้น, ไม่ใช่เกิดจากปฏิกิริยานิวเคลียร์. ทั้งนี้เป็นเพราะนิวเคลียสของอะตอมโดยทั่วไปจะอยู่ห่างจากกันเพราะพวกมันมีประจุไฟฟ้าบวก ดังนั้นมันจึงผลักกันและกัน.
ในปี 1896 นาย อ็องตวน อ็องรี แบ็กแรล ในขณะที่ทำการทดสอบการเรืองแสงอย่างช้า (อังกฤษ: phosphorescence)[1] ในเกลือยูเรเนียม เขาก็ได้ค้นพบปรากฏการณ์ใหม่ซึ่งเรียกมันว่ากัมมันตภาพรังสี[2] นายปิแอร์ กูรีและนางมารี กูรีเริ่มทดสอบปรากฏการณ์นี้ ในกระบวนการนี้ พวกเขาแยกองค์ประกอบเรเดียมซึ่งมีกัมมันตภาพรังสีสูง พวกเขาค้นพบว่าสารกัมมันตรังสีจะผลิตรังสีที่สามารถทะลุทะลวงได้อย่างรุนแรง, รังสีเหล่านี้มีสามประเภทที่แตกต่างกัน, ซึ่งพวกเขาตั้งชื่อพวกมันว่ารังสีแอลฟา, บีตา, และแกมมาตามอักษรกรีก บางส่วนของชนิดของรังสีเหล่านี้จะสามารถเจาะผ่านสารธรรมดาได้ และทุกชนิดของพวกมันอาจเป็นอันตรายถ้าสัมผัสในปริมาณมาก ทั้งหมดของนักวิจัยในช่วงต้นต่างก็ถูกเผาไหม้จากรังสีเหล่านั้นทั้งนั้น มันรุนแรงมากเหมือนถูกแดดเผา แต่พวกเขาก็คิดว่ามันเป็นเรื่องเล็กน้อย
ปรากฏการณ์ใหม่ของกัมมันตภาพรังสีถูกนำมาใช้โดยผู้ผลิตของยาต้มตุ๋น (เหมือนอย่างที่มีการค้นพบไฟฟ้าและแม่เหล็กก่อนหน้านี้) และสิทธิบัตรยาและการรักษาจำนวนมากที่เกี่ยวข้องกับกัมมันตภาพรังสีก็ถูกผลักดันให้ก้าวหน้าขึ้นไปอีก
ค่อยๆตระหนักว่ารังสีที่ผลิตโดยการสลายกัมมันตรังสีเป็นรังสีที่เกิดจากการแตกตัวไอออน (อังกฤษ: ionizing radiation), และค่อยๆตระหนักว่าแม้ปริมาณจะมีขนาดเล็กเกินไปที่จะเผาไหม้แต่ก็อาจก่อให้เกิดอันตรายในระยะยาวได้อย่างรุนแรง นักวิทยาศาสตร์หลายคนที่ทำงานเกี่ยวกับกัมมันตภาพรังสีได้เสียชีวิตจากโรคมะเร็งซึ่งเป็นผลมาจากการสัมผัสกับรังสีของพวกเขา. ยาที่มีสิทธิบัตรกัมมันตรังสีส่วนใหญ่เริ่มหายไป, แต่การประยุกต์ใช้งานอื่นๆของวัสดุกัมมันตรังสียังคงยืนกราน, เช่นการใช้เกลือเรเดียมในการผลิตหน้าปัดเรืองแสงในมิเตอร์เครื่องวัด.
เมื่ออะตอมเป็นที่เข้าใจกันมากขึ้น, ธรรมชาติของกัมมันตภาพรังสีก็ชัดเจนขึ้น. บางนิวเคลียสขนาดใหญ่ของอะตอมจะไม่เสถียร, จึงสลายตัว (ปลดปล่อยสารหรือพลังงาน) หลังจากการสุ่มตามช่วงเวลา. สามรูปแบบของรังสีที่ Becquerel และ Curies ค้นพบก็เข้าใจกันมากขึ้นอย่างเต็มที่ด้วย การสลายให้อนุภาคแอลฟาเกิดขึ้นเมื่อนิวเคลียสปลดปล่อยอนุภาคแอลฟา ซึ่งมีสองโปรตอนและสองนิวตรอน เทียบเท่ากับนิวเคลียสของฮีเลียม การสลายให้อนุภาคบีตาเกิดขึ้นเมื่อมีการปลดปล่อยอนุภาคบีตา ซึ่งเป็นอิเล็กตรอนพลังงานสูง การสลายให้อนุภาคแอลฟาจะปลดปล่อยรังสีแกมมา ซึ่ง แตกต่างจากรังสีแอลฟาและบีตา ไม่ได้เป็นสารแต่เป็นคลื่นแม่เหล็กไฟฟ้าความถี่สูงมาก และนั่นก็คือพลังงาน รังสีเหล่านี้เป็นอันตรายมากที่สุดและยากที่สุดในการสกัดกั้น ทั้งสามประเภทของรังสีจะเกิดขึ้นตามธรรมชาติในองค์ประกอบบางอย่าง
เป็นที่ชัดเจนแล้วว่าแหล่งของพลังงานที่สุดยอดบนพื้นดินมากที่สุดคือนิวเคลียร์โดยผ่านการฉายรังสีจากดวงอาทิตย์ที่เกิดจากปฏิกิริยานิวเคลียร์ของดวงดาว หรือโดยการสลายกัมมันตรังสีของยูเรเนียมภายในโลกซึ่งเป็นแหล่งที่มาหลักของพลังงานความร้อนใต้พิภพ
บทความหลัก: ฟิชชั่น
ในการแผ่รังสีนิวเคลียร์ตามธรรมชาติ ผลพลอยได้มีขนาดเล็กมากเมื่อเทียบกับนิวเคลียสที่พวกมันก่อกำเนิดขึ้น นิวเคลียร์ฟิชชั่นเป็นกระบวนการของการแยกนิวเคลียสออกเป็นส่วนๆเกือบเท่าๆกันและปลดปล่อยพลังงานและนิวตรอนในระหว่างกระบวนการนั้น ถ้านิวตรอนเหล่านี้ถูกจับโดยนิวเคลียสอื่นที่ไม่เสถียร นิวเคลียสนั้นก็สามารถแตกตัวหรือฟืชชันได้เช่นกัน ซึ่งนำไปสู่การเกิดปฏิกิริยาลูกโซ่ ค่าเฉลี่ยของจำนวนนิวตรอนที่ถูกปล่อยออกมาต่อนิวเคลียสที่ไปฟิชชั่นนิวเคลียสอื่นจะเรียกว่าค่า "k" ค่า k มากกว่า 1 หมายความว่าปฏิกิริยาฟิชชันจะปล่อยนิวตรอนมากกว่ามันดูดซับไว้และดังนั้นจึงจะเรียกว่าเป็นปฏิกิริยาลูกโซ่อย่างยั่งยืนด้วยตัวเอง มวลของวัสดุฟิสไซล์ที่มีขนาดใหญ่พอ (และในคอนฟิคฯที่เหมาะสม) ที่จะก่อให้เกิดปฏิกิริยาลูกโซ่อย่างยั่งยืนด้วยตนเองเรียกว่ามวลวิกฤต (อังกฤษ: critical mass).
เมื่อนิวตรอนถูกจับโดยนิวเคลียสที่เหมาะสม ฟิชชันอาจเกิดขึ้นทันที หรือนิวเคลียสอาจจะยังคงยืนหยัดอยู่ในสภาพที่ไม่เสถียรในช่วงเวลาสั้นๆ หากมีการสลายตัวทันทีมากพอที่จะดำเนินการให้เกิดปฏิกิริยาลูกโซ่ต่อไปเรื่อยๆ มวลจะถูกเรียกว่า วิกฤตฉับพลัน (อังกฤษ: prompt critical) และการปล่อยพลังงานจะขยายตัวอย่างรวดเร็วและไม่สามารถควบคุมได้ มักจะนำไปสู่การระเบิด
เมื่อมีการค้นพบก่อนสงครามโลกครั้งที่สอง ความเข้าใจนี้ทำให้หลายประเทศเริ่มต้นโครงการที่จะตรวจสอบความเป็นไปได้ของการสร้างระเบิดปรมาณู - อาวุธที่ใช้ปฏิกิริยาฟิชชันในการสร้างพลังงานมากเกินกว่าที่จะสร้างขึ้นด้วยวัตถุระเบิดแบบสารเคมี โครงการแมนฮัตตัน ดำเนินการโดยประเทศสหรัฐอเมริกาด้วยความช่วยเหลือของสหราชอาณาจักรและแคนาดา ได้พัฒนาอาวุธที่ฟิชชันเป็นทวีคูณซึ่งถูกนำมาใช้กับญี่ปุ่นในปี 1945 ที่ฮิโรชิมาและนางาซากิ ในระหว่างโครงการ เครื่องปฏิกรณ์ปรมาณูครั้งแรกได้รับการพัฒนาเช่นกัน แม้ว่าพวกมันจะเป็นหลักในการผลิตอาวุธในเบื้องแรกและไม่ได้ผลิตกระแสไฟฟ้า
อย่างไรก็ตาม ถ้ามวลจะวิกฤตได้ก็ต่อเมื่อนิวตรอนที่ถูกหน่วงความเร็วถูกป้อนเข้าไป ดังนั้นปฏิกิริยาก็สามารถควบคุมได้ เช่นโดยการใส่เข้าไปหรือการดึงออกมาโดยตัวดูดซับนิวตรอน (อังกฤษ: neutron absorber) นี่คือสิ่งที่ช่วยให้เครื่องปฏิกรณ์นิวเคลียร์สามารถที่จะถูกสร้างได้ นิวตรอนเร็วไม่สามารถถูกจับโดยนิวเคลียสได้โดยง่าย พวกมันจะต้องถูกชะลอความเร็ว (ให้เป็นนิวตรอนช้า) โดยทั่วไปโดยการชนกับนิวเคลียสของตัวหน่วงนิวตรอน (อังกฤษ: neutron moderator) ก่อนที่พวกมันจะถูกจับได้อย่างง่ายดาย ในวันนี้ ประเภทนี้ของการฟิชชันเป็นที่นิยมใช้ในการผลิตไฟฟ้า
ปฏิกิริยานิวเคลียร์ฟิวชั่น
แก้บทความหลัก: ปฏิกิริยานิวเคลียร์ฟิวชั่น
ถ้านิวเคลียสมากกว่าหนึ่งตัวถูกบังคับให้ชนกัน พวกมันก็สามารถทำให้เกิดนิวเคลียร์ฟิวชันได้ กระบวนการนี้อาจปล่อยหรือดูดซับพลังงาน ถ้านิวเคลียสที่เกิดจากการชนมีน้ำหนักเบากว่านิวเคลียสของเหล็ก พลังงานจะถูกปล่อยออกมาตามปกติ แต่เมื่อนิวเคลียสนั้นหนักกว่าของเหล็ก โดยทั่วไปพลังงานจะถูกดูดซับ กระบวนการของการฟิวชั่นนี้เกิดขึ้นในดวงดาว ซึ่งได้รับพลังงานของพวกมันจากไฮโดรเจนและฮีเลียม พวกมันก่อตัวขึ้นผ่าน'การสังเคราะนิวเคลียสแบบกลุ่มดาว' (อังกฤษ: stellar nucleosynthesis) และองค์ประกอบเบา (ลิเธียมจนถึงแคลเซียม) เช่นเดียวกับบางส่วนขององค์ประกอบหนัก (เกินกว่าเหล็กและนิกเกิลผ่านทาง S-process) ความอุดมสมบูรณ์ที่เหลืออยู่ขององค์ประกอบหนัก จากนิกเกิลจนถึงยูเรเนียมและไกลกว่านั้น เป็นเพราะกระบวนการการสังเคราะห์นิวเคลียสแบบซูเปอร์โนวา (อังกฤษ: supernova nucleosynthesis) หรือที่เรียกว่า R-process.
แน่นอน กระบวนการทางธรรมชาติเหล่านี้ของดาราศาสตร์ไม่ได้เป็นตัวอย่างของนิวเคลียร์ "เทคโนโลยี" เพราะแรงผลักที่แข็งแกร่งมากของนิวเคลียส ฟิวชั่นจึงเป็นเรื่องยากที่จะควบคุม ระเบิดไฮโดรเจนได้รับอำนาจการทำลายล้างของพวกมันอย่างมากจากฟิวชั่น แต่พลังงานของพวกมันไม่สามารถควบคุมได้ ฟิวชั่นจะสามารถควบคุมได้ในเครื่องเร่งอนุภาค (อังกฤษ: particle accelerator); นี่คือวิธีที่หลายองค์ประกอบสังเคราะห์ (ในทางเคมี, มันคือสารประกอบที่ไม่ปรากฏตามธรรมชาติ, มันถูกสร้างขึ้นโดยการประดิษฐ์เท่านั้น นับถึงปัจจุบัน มีสารดังกล่าวอยู่ 20 ตัวได้ถูกสร้างขึ้น พวกที่มีเลขอะตอม 99–118 ทุกตัวไม่เสถียร มันสลายตัวด้วยครึ่งชีวิตระหว่างหนึ่งปีถึงไม่กี่มิลลิวินาที) ได้ถูกผลิตขึ้น Fusor ยังสามารถผลิตฟิวชั่นที่ถูกควบคุมและเป็นแหล่งนิวตรอนที่มีประโยชน์ อย่างไรก็ตาม อุปกรณ์ทั้งสองเหล่านี้จะทำงานแบบการสูญเสียพลังงานสุทธิ พลังงานฟิวชั่นที่ถูกควบคุมและทำงานได้พิสูจน์แล้วว่าเข้าใจยาก แม้จะมีการหลอกลวงเป็นครั้งคราว ความยุ่งยากทางเทคนิคและทางทฤษฎีได้ขัดขวางการพัฒนาของเทคโนโลยีฟิวชั่นพลเรือนที่กำลังทำงานอยู่ แม้ว่าการวิจัยยังดำเนินต่อไปในวันนี้ทั่วโลก
นิวเคลียร์ฟิวชันถูกไล่ล่าหาความจริงในตอนต้นในขั้นตอนทางทฤษฎีเท่านั้นในช่วงสงครามโลกครั้งที่สอง เมื่อนักวิทยาศาสตร์ในโครงการแมนฮัตตัน (นำโดยเอ็ดเวิร์ด Teller) ตรวจสอบว่ามันเพื่อการสร้างระเบิด โครงการได้ละทิ้งฟิวชั่นหลังจากที่มีการสรุปว่ามันต้องการปฏิกิริยาฟิชชันเพื่อจุดระเบิด มันต้องใช้เวลาจนถึงปี 1952 สำหรับระเบิดไฮโดรเจนเต็มรูปแบบลูกแรกที่จะถูกจุดชนวน, ที่เรียกอย่างนั้นเพราะว่ามันใช้ปฏิกิริยาระหว่าง ดิวเทอเรียม และ ทริเทียม ปฏิกิริยาฟิวชั่นอื่นๆมีพลังมากมายต่อหน่วยมวลของเชื้อเพลิงมากกว่าปฏิกิริยาฟิชชัน แต่การเริ่มต้นปฏิกิริยาลูกโซ่ของฟิวชั่นเป็นเรื่องยากกว่ามาก.
อาวุธนิวเคลียร์
แก้บทความหลัก: อาวุธนิวเคลียร์
อาวุธนิวเคลียร์เป็นอุปกรณ์ที่ระเบิดได้ที่ได้รับแรงทำลายล้างจากปฏิกิริยานิวเคลียร์, ฟิชชันหรือรวมกันของฟิชชันและฟิวชั่น. ปฏิกิริยาทั้งสองปลดปล่อยพลังงานในปริมาณมหาศาลจากปริมาณที่ค่อนข้างเล็กของสาร. แม้กระทั่งอุปกรณ์นิวเคลียร์ขนาดเล็กก็สามารถทำลายล้างหนึ่งเมืองได้โดยการระเบิด, ไฟไหม้และการแผ่รังสี. อาวุธนิวเคลียร์ได้รับการพิจารณาว่าเป็นอาวุธที่มีอำนาจทำลายล้างสูง (อังกฤษ: weapons of mass destruction) และการใช้งานและการควบคุมพวกมันได้เป็นลักษณะสำคัญของนโยบายต่างประเทศนับตั้งแต่เปิดตัวครั้งแรกของพวกมัน.
การออกแบบของอาวุธนิวเคลียร์มีความซับซ้อนมากขึ้นกว่าที่มันน่าจะเป็น. อาวุธดังกล่าวจะต้องมีวัสดุฟิสไซล์ใต้วิกฤต (อังกฤษ: subcritical) หนึ่งสารหรือมากกว่าที่เสถียรพรัอมในการนำไปใช้, แล้วทำให้เกิดการวิกฤต (สร้าง critical mass) สำหรับการจุดระเบิด. นอกจากนี้ มันยังคงค่อนข้างยากที่จะตรวจสอบให้แน่ใจว่าปฏิกิริยาลูกโซ่เช่นนั้นได้กินส่วนที่มีนัยสำคัญของเชื้อเพลิงก่อนที่อุปกรณ์จะบินออกไป. การจัดซื้อจัดจ้างของเชื้อเพลิงนิวเคลียร์ยังเป็นเรื่องยากมากกว่าที่มันน่าจะเป็น, เนื่องจากไม่มีสารที่เกิดขึ้นตามธรรมชาติจะไม่เสถียรพอที่จะทำให้กระบวนการนี้เกิดขึ้นได้.
หนึ่งไอโซโทปของยูเรเนียม, ชื่อว่ายูเรเนียม-235, เกิดขึ้นตามธรรมชาติและไม่เสถียรเพียงพอ, แต่มันก็พบเสมอถูกผสมกับไอโซโทปที่มีเสถียรภาพมากขึ้นชื่อว่ายูเรเนียม-238. สารตัวหลังมีมากกว่า 99% ของน้ำหนักของยูเรเนียมตามธรรมชาติ. ดังนั้นบางวิธีการของการแยกไอโซโทปที่ขึ้นอยู่กับน้ำหนักของสามนิวตรอนจะต้องดำเนินการเพื่อเสริมสมรรถนะ (แยก) ยูเรเนียม-235.
อีกทางเลือกหนึ่ง, ธาตุพลูโตเนียมมีไอโซโทปหนึ่งที่ไม่เสถียรพอสำหรับกระบวนการนี้จะใช้งานได้. พลูโตเนียมไม่ได้เกิดขึ้นตามธรรมชาติ, ดังนั้นจึงต้องมีการผลิตในเครื่องปฏิกรณ์นิวเคลียร์.
อย่างสุดขั้วที่สุด, โครงการแมนฮัตตันได้ผลิตอาวุธนิวเคลียร์ที่ขึ้นอยู่กับแต่ละองค์ประกอบเหล่านี้. พวกเขาจุดระเบิดอาวุธนิวเคลียร์เป็นครั้งแรกในการทดสอบที่มีชื่อรหัสว่า "ทรินิตี้", ใกล้ Alamogordo, รัฐนิวเม็กซิโก, เมื่อวันที่ 16 กรกฎาคม ค.ศ. 1945. การทดสอบได้ดำเนินการเพื่อให้แน่ใจว่าวิธีการจุดระเบิดของระเบิดจะทำงาน, ซึ่งมันก็ทำงาน. ระเบิดยูเรเนียม, "Little Boy", ถูกทิ้งที่เมืองฮิโรชิมาของญี่ปุ่นเมื่อวันที่ 6 สิงหาคม ค.ศ. 1945, ตามด้วย "Fat Man" ที่ทำด้วยพลูโตเนียมในอีกสามวันต่อมาที่เมืองนางาซากิ. ในการปลุกให้ตื่นของการทำลายล้างและการบาดเจ็บล้มตายเป็นประวัติการณ์จากอาวุธเดียว, รัฐบาลญี่ปุ่นในไม่ช้าก็ยอมจำนน, เป็นการสิ้นสุดสงครามโลกครั้งที่สอง.
ตั้งแต่การระเบิดที่สองเมืองนั้น, ไม่มีอาวุธนิวเคลียร์ได้ถูกนำไปใช้อย่างก้าวร้าว. อย่างไรก็ตาม, พวกมันกระตุ้นให้เกิดการแข่งขันด้านอาวุธเพื่อพัฒนาระเบิดที่ทำลายล้างได้มากขึ้นเพื่อยับยั้งนิวเคลียร์. เพียงสี่ปีต่อมาเมื่อวันที่ 29 สิงหาคม 1949, สหภาพโซเวียตได้จุดระเบิดอาวุธฟิชชัน RDS-1 เป็นครั้งแรก. สหราชอาณาจักรทำตามเมื่อ 2 ตุลาคม 1952; ฝรั่งเศสเมื่อวันที่ 13 กุมภาพันธ์ 1960; และประเทศจีน. ประมาณครึ่งหนึ่งของผู้รอดชีวิตจากฮิโรชิมาและนางาซากิเสียชีวิต 2-5 ปีหลังจากนั้นเนื่องจากการสัมผัสรังสี[3][4]. อาวุธรังสี (อังกฤษ: radiological weapon) เป็นชนิดหนึ่งของอาวุธนิวเคลียร์ที่ออกแบบมาเพื่อแจกจ่ายวัสดุนิวเคลียร์ที่เป็นอันตรายในพื้นที่ของศัตรู. อาวุธดังกล่าวจะไม่ได้มีความสามารถในการระเบิดของฟิชชันหรือฟิวชั่น, แต่จะฆ่าคนจำนวนมากและปนเปื้อนพื้นที่ขนาดใหญ่. อาวุธรังสีไม่เคยถูกนำไปใช้. ในขณะที่มีการพิจารณาว่าไร้ประโยชน์โดยกองทัพธรรมดา, อาวุธดังกล่าวเพิ่มความกังวลเกี่ยวกับการก่อการร้ายนิวเคลียร์.
มีการทดสอบนิวเคลียร์กว่า 2,000 ครั้งได้ถูกดำเนินการตั้งแต่ปี 1945. ในปี 1963, ประเทศที่มีนิวเคลียร์ทั้งหมดและหลายประเทศที่ไม่มีนิวเคลียร์ได้ลงนาม "สนธิสัญญาห้ามและจำกัดการทดลอง", โดยให้คำมั่นว่าจะละเว้นจากการทดสอบอาวุธนิวเคลียร์ในบรรยากาศ, ใต้น้ำ, หรือในอวกาศรอบนอก. สนธิสัญญาอนุญาตการทดสอบนิวเคลียร์ใต้ดิน. ฝรั่งเศสยังคงทดสอบในบรรยากาศจนถึงปี 1974, ขณะที่จีนยังคงทำจนถึงปี 1980. การทดสอบใต้ดินครั้งสุดท้ายโดยสหรัฐอเมริกาทำในปี 1992, โดยสหภาพโซเวียตในปี 1990, โดยสหราชอาณาจักรในปี 1991, และทั้งสองประเทศฝรั่งเศสและจีนยังคงทดสอบจนกระทั่งปี 1996. หลังจากการลงนาม "สนธิสัญญาห้ามทดลองครอบคลุม" ในปี 1996 (ซึ่ง ณ ปี 2011 ไม่ได้มีผลบังคับใช้), ทั้งหมดของรัฐเหล่านี้ได้ให้คำมั่นที่จะยุติการทดสอบนิวเคลียร์ทั้งหมด. ผู้ไม่ลงนาม, อินเดียและปากีสถานได้ทดสอบอาวุธนิวเคลียร์ครั้งสุดท้ายในปี 1998.
อาวุธนิวเคลียร์เป็นอาวุธทำลายล้างที่รู้จักกันมากที่สุด - แม่แบบของอาวุธแห่งการทำลายล้าง. ตลอดช่วงสงครามเย็น, อำนาจของฝ่ายตรงข้ามมีคลังแสงนิวเคลียร์ขนาดใหญ่, เพียงพอที่จะฆ่าได้หลายร้อยล้านคน. รุ่นของคนที่เติบโตขึ้นมาภายใต้ร่มเงาของการทำลายล้างด้วยนิวเคลียร์, สร้างออกมาเป็นภาพในภาพยนตร์เช่น "Dr. Strangelove" และ "The Atomic Cafe".
อย่างไรก็ตาม, การปล่อยพลังงานอย่างมากในการระเบิดของอาวุธนิวเคลียร์ยังชี้ให้เห็นความเป็นไปได้ของแหล่งพลังงานใหม่.
การใช้ทางพลเรือน
แก้พลังงานนิวเคลียร์
แก้ข้อมูลเพิ่มเติม: พลังงานนิวเคลียร์และเทคโนโลยีเครื่องปฏิกรณ์นิวเคลียร์
พลังงานนิวเคลียร์เป็นประเภทหนึ่งของเทคโนโลยีนิวเคลียร์ที่เกี่ยวข้องกับการใช้แบบควบคุมของนิวเคลียร์ที่จะปล่อยพลังงานสำหรับการทำงานที่รวมถึงแรงขับดัน, ความร้อน, และการผลิตกระแสไฟฟ้า. พลังงานนิวเคลียร์ถูกผลิตโดยปฏิกิริยาลูกโซ่นิวเคลียร์ที่ถูกควบคุมซึ่งจะสร้างความร้อนที่ใช้ในการต้มน้ำ, ผลิตไอน้ำ, และขับกังหันไอน้ำ. กังหันถูกใช้ในการผลิตกระแสไฟฟ้าและ/หรือในการทำงานทางกล.
ปัจจุบันพลังงานนิวเคลียร์มีประมาณ 15.7% ของการผลิตไฟฟ้าของโลก (ในปี 2004) และถูกใช้ในการขับเคลื่อนเรือบรรทุกเครื่องบิน, เรือตัดน้ำแข็งและเรือดำน้ำ (นับถึงปัจจุบันเศรษฐศาสตร์และความกลัวในบางท่าเรือมีการหลีกเลี่ยงการใช้พลังงานนิวเคลียร์ในเรือขนส่ง)[5]. ทุกโรงไฟฟ้านิวเคลียร์ใช้ปฏิกิริยาฟิชชัน. ยังไม่มีปฏิกิริยาฟิวชั่นที่มนุษย์สร้างขึ้นในการผลิตกระแสไฟฟ้า.
การใช้งานทางการแพทย์
แก้ข้อมูลเพิ่มเติม: เวชศาสตร์นิวเคลียร์ (อังกฤษ: Nuclear medicine)
การประยุกต์ใช้งานทางการแพทย์ของเทคโนโลยีนิวเคลียร์จะถูกแบ่งออกเป็นการวินิจฉัยและการรักษาด้วยรังสี.
การถ่ายภาพ - การใช้งานที่ใหญ่ที่สุดของรังสีในทางการแพทย์จะอยู่ใน'การถ่ายภาพรังสีทางการแพทย์' (อังกฤษ: medical radiography) เพื่อสร้างภาพภายในของร่างกายมนุษย์โดยใช้รังสีเอกซ์. วิธีการนี้เป็นแหล่งที่มาของสิ่งแปลกปลอมที่ใหญ่ที่สุดของการได้รับรังสีสำหรับมนุษย์. ตัวสร้างภาพ x-ray ทางการแพทย์และทันตกรรมจะใช้โคบอลต์-60 หรือแหล่งสร้าง X-ray อื่นๆ. ยารังสี (อังกฤษ: radiopharmaceutical) จำนวนมากมีการนำมาใช้, บางครั้งติดอยู่กับโมเลกุลของสารอินทรีย์, เพื่อทำหน้าที่แกะรอยกัมมันตรังสีเป็นหรือสารทึบรังสี (สารดังกล่าวเรียกว่าสารสร้างความแตกต่างของภาพ (อังกฤษ: contrast agent)) ในร่างกายมนุษย์, เช่นในระหว่างการทำ CT scan. นิวคลีโอไทด์[6] ที่ปล่อยโพซิตรอน[7] ถูกใช้สำหรับการถ่ายภาพช่วงกว้างความละเอียดสูงในเวลาสั้นๆในการประยุกต์ใช้งานที่รู้จักกันว่าเป็นการสร้างภาพเอกซเรย์ด้วยการปล่อยโพซิตรอน (อังกฤษ: Positron emission tomography).
การฉายรังสียังถูกนำมาใช้ในการรักษาโรคด้วยวิธี'การรักษาด้วยรังสี' (อังกฤษ: radiation therapy) อีกด้วย.
การประยุกต์ใช้ในงานอุตสาหกรรม
แก้เนื่องจากบางรังสีสามารถเจาะเข้าไปในมวลสารได้, พวกมันจะถูกใช้สำหรับการวัดได้อย่างหลากหลาย. รังสีเอกซ์และรังสีแกมมาจะถูกใช้ในการถ่ายภาพรังสีอุตสาหกรรมเพื่อสร้างภาพภายในของผลิตภัณฑ์ที่เป็นของแข็ง, เป็นวิธีการทดสอบและการตรวจสอบโดยไม่ทำลายผลิตภัณฑ์นั้น. ชิ้นส่วนที่จะทำการถ่ายภาพรังสีจะถูกวางอยู่ระหว่างแหล่งสร้างรังสีและฟิล์มถ่ายภาพในเทปคาสเซ็ท. หลังจากการสัมผัสกับรังสีในช่วงเวลาหนึ่ง, ฟิล์มจะถูกล้างและมันจะแสดงให้เห็นข้อบกพร่องใดๆภายในของวัสดุ.
มาตรวัด - มาตรวัดใช้กฎของการดูดซึมแบบ exponential ของรังสีแกมมา.
- ตัวชี้วัดระดับ: แหล่งสร้างรังสีและตัวตรวจจับจะอยู่คนละฝั่งของภาชนะบรรจุ, เพื่อแสดงการปรากฏหรือไม่ปรากฏของวัสดุในเส้นทางรังสีแนวนอน. รังสีที่ใช้จะเป็นรังสี Beta หรือแกมมาขึ้นอยู่กับความหนาและความหนาแน่นของวัสดุที่จะวัด. วิธีการนี้จะใช้สำหรับภาชนะบรรจุของเหลวหรือสารเม็ดเล็กๆ.
- เครื่องวัดความหนา: ถ้าวัสดุมีความหนาแน่นคงที่, สัญญาณที่วัดได้โดยตัวตรวจจับรังสีจะขึ้นอยู่กับความหนาของวัสดุ. นี้จะเป็นประโยชน์สำหรับการผลิตที่ทำอย่างต่อเนื่อง, เช่นกระดาษ, ยาง ฯลฯ
การควบคุมไฟฟ้าสถิต - เพื่อหลีกเลี่ยงการสร้างขึ้นของกระแสไฟฟ้าสถิตย์ในการผลิตกระดาษ, พลาสติก, สิ่งทอสังเคราะห์ ฯลฯ, แหล่งผลิตรังสีอัลฟารูปริบบิ้น 241Americium สามารถวางใกล้กับวัสดุที่ปลายของสายการผลิต. แหล่งดังกล่าวจะ ionizes อากาศเพื่อเคลื่อนย้ายประจุไฟฟ้าบนวัสดุออกไป.
เครื่องแกะรอยกัมมันตรังสี - เนื่องจากไอโซโทปกัมมันตรังสีจะประพฤติ, ทางเคมี, ส่วนใหญ่เหมือนองค์ประกอบที่ไม่แอ็คทีฟ, พฤฒิกรรมของสารเคมีบางอย่างสามารถถูกสืบหาได้ด้วย"การแกะรอย" กัมมันตภาพรังสี. ตัวอย่าง:
- การเพิ่มตัวแกะรอยแกมมาให้กับก๊าซหรือของเหลวในระบบปิดทำให้มันเป็นไปได้ที่จะหารูในหลอด
- การเพิ่มตัวแกะรอยให้กับพื้นผิวของส่วนประกอบของมอเตอร์ทำให้มันเป็นไปได้ที่จะวัดการสึกหรอโดยการวัดการทำงานของน้ำมันหล่อลื่น.
การสำรวจหาน้ำมันและก๊าซ - การทำรายงานหลุมเจาะ (อังกฤษ: well logging) ด้วยนิวเคลียร์จะถูกใช้เพื่อช่วยทำนายศักยภาพในเชิงพาณิชย์ของหลุมเจาะใหม่หรือหลุมที่มีอยู่แล้ว. เทคโนโลยีที่ใช้จะเกี่ยวข้องกับการใช้นิวตรอนหรือแหล่งกำเนิดรังสีแกมมาและตัวตรวจจับรังสีซึ่งจะหย่อนลงไปในหลุมเจาะเพื่อตรวจสอบคุณสมบัติของหินที่อยู่รอบเช่นความพรุนและการพิมพ์หิน[8].
การก่อสร้างถนน - เครื่องวัดความชื้น/ความหนาแน่นด้วยนิวเคลียร์ถูกใช้ในการกำหนดความหนาแน่นของดิน, ยางมะตอย, และคอนกรีต. โดยปกติจะใช้ ซีเซียม-137.
การประยุกต์ใช้ในงานเชิงพาณิชย์
แก้- การเรืองแสงด้วยรังสี (อังกฤษ: radioluminescence)
- การส่องสว่างด้วย tritium: tritium ถูกใช้กับ phosphor ในกล้องเล็งของปืนเพื่อเพิ่มความแม่นยำในการยิงตอนกลางคืน. บางเครื่องหมายบนรันเวย์และป้ายบอกทางออกของอาคารจะใช้เทคโนโลยีเดียวกันนี้เพื่อให้ยังคงส่องสว่างในช่วงไฟดับ[9].
- แบตเตอรีรังสีเบต้า (อังกฤษ: Betavoltaics).
- ตัวตรวจจับควัน: ตัวตรวจจับควันแบบไอออไนซ์ประกอบด้วยมวลเล็กๆของสารกัมมันตรังสีอะเมริเซียม-241, ซึ่งเป็นแหล่งผลิตรังสีอัลฟา. ห้องที่มีการ Ionisation สองห้องจะอยู่ติดกัน. ทั้งสองห้องมีแหล่งผลิตขนาดเล็กของ 241Am ที่สร้างกระแสไฟฟ้าขนาดเล็กที่คงที่. ห้องหนึ่งจะปิดและทำหน้าที่เป็นตัวเปรียบเทียบ, อีกห้องหนึ่งจะเปิดให้อากาศโดยรอบข้างในมีขั้วไฟฟ้าแบบตะแกรง. เมื่อควันเข้ามาในห้องเปิด, กระแสจะชะงักเนื่องจากอนุภาคของควันไปติดกับไอออนที่มีประจุและส่งมันกลับไปสู่สถานะเป็นกลางทางไฟฟ้า. ปรากฏการณ์นี้จะช่วยลดกระแสในห้องเปิด. เมื่อกระแสลดลงต่ำกว่าเกณฑ์ที่กำหนด, เสียงเตือนภัยก็จะดัง.
การประมวลอาหารและการเกษตร
แก้ในทางชีววิทยาและการเกษตร, การฉายรังสีถูกใช้เพื่อทำให้เกิดการกลายพันธุ์ในการผลิตหรือปรับปรุงสายพันธุ์ใหม่. อีกการใช้หนึ่งคือการควบคุมแมลงโดยใช้เทคนิคการทำหมันแมลง, โดยที่แมลงตัวผู้จะถูกทำหมันโดยการฉายรังสีและจะถูกปล่อยตัวออกไปเพื่อให้พวกมันจะไม่มีลูกหลานอีก, เป็นการลดจำนวนประชากร.
ในการประยุกต์ใช้ในงานอุตสาหกรรมและอาหาร, การฉายรังสีถูกใช้สำหรับการฆ่าเชื้อเครื่องมือและอุปกรณ์. ประโยชน์ก็คือวัตถุอาจถูกปิดผนึกอยู่ในถุงพลาสติกก่อนที่จะมีการฆ่าเชื้อ. การใช้งานที่เกิดขึ้นใหม่ในการผลิตอาหารคือการฆ่าเชื้ออาหารโดยใช้การฉายรังสีอาหาร (อังกฤษ: food irradiation).
การฉายรังสีอาหาร[10] เป็นกระบวนการของการเปิดอาหารให้สัมผัสกับรังสีเพื่อฆ่าเชื้อแบคทีเรีย, ไวรัส, หรือแมลงที่อาจจะมีอยู่ในอาหาร. แหล่งสร้างรังสีที่ใช้คือแหล่งสร้างรังสีแกมมา radioisotope, ตัวกำเนิด X-ray และตัวเร่งอิเล็กตรอน. การประยุกต์ใช้งานเพิ่มเติมรวมถึงการยับยั้งการงอก, การถ่วงเวลาการสุก, การเพิ่มอัตราผลผลิตของน้ำผลไม้, และการปรับปรุงความชุ่มชื้น. การฉายรังสีเป็นคำทั่วไปมากขึ้นของการสัมผัสโดยเจตนาของวัสดุกับรังสีเพื่อให้บรรลุเป้าหมายทางเทคนิค (ในบริบทนี้หมายถึง 'รังสีแบบไอโอไนเซชั่น'). โดยวิธีการเช่นนี้, มันยังถูกนำมาใช้ในรายการที่ไม่ใช่อาหารอีกด้วย, เช่นฮาร์ดแวร์ทางการแพทย์, พลาสติก, ท่อก๊าซ, ท่อสำหรับให้ความร้อนแต่ละชั้นของอาคาร, ฟอยล์หดสำหรับบรรจุภัณฑ์อาหาร, ชิ้นส่วนรถยนต์, สายไฟและสายเคเบิล, ยาง และแม้กระทั่งอัญมณี. เมื่อเทียบกับปริมาณของอาหารที่ถูกฉายรังสี, ปริมาณการใช้ในแต่ละวันมีมาก, แต่ไม่ได้สังเกตโดยผู้บริโภค.
ผลกระทบของแท้ของการประมวลอาหารโดยการฉายรังสีจะเกี่ยวข้องกับความเสียหายที่เกิดกับดีเอ็นเอ, ข้อมูลทางพันธุกรรมพื้นฐานสำหรับชีวิต. จุลินทรีย์จะไม่สามารถขยายพันธ์และดำเนินการกิจกรรมของเชื้อโรคและความร้ายแรงของพวกมันได้อีกต่อไป. การเน่าเสียที่ก่อให้เกิดจุลินทรีย์ก็ไม่สามารถดำเนินกิจกรรมของพวกมันได้อีกต่อไป. แมลงไม่รอดหรือกลายเป็นหมดความสามารถในการให้กำเนิด. พืชไม่สามารถจะถูกทำให้สุกหรืออยู่ในกระบวนการชราได้ตามธรรมชาติ. ผลกระทบทั้งหมดเหล่านี้จะเป็นประโยชน์ต่อผู้บริโภคและอุตสาหกรรมอาหารเช่นเดียวกัน[10].
ปริมาณของพลังงานสำหรับการฉายรังสีอาหารที่มีประสิทธิภาพอยู่ในระดับต่ำเมื่อเทียบกับการประกอบอาหาร; แม้แต่ในปริมาณทั่วไปที่ 10 กิโลเกรย์สำหรับอาหารส่วนใหญ่, ซึ่งในทางกายภาพเทียบเท่ากับทำให้น้ำอุ่นขึ้นเพียงประมาณ 2.5 °C (4.5 °F).
การเป็นพิเศษของการประมวลอาหารโดยใช้รังสีที่เกิดจากการไอออไนเวชั่นคือความจริงที่ว่าความหนาแน่นของพลังงานต่อการเปลี่ยนแปลงอะตอมจะสูงมาก, มันสามารถแยกโมเลกุลและทำให้เกิดการไอออไนซ์ (เพราะฉะนั้นจึงได้ชื่อนี้) ซึ่งไม่สามารถทำได้ด้วยความร้อนเท่านั้น. นี่คือเหตุผลสำหรับผลจากประโยชน์ที่ได้ใหม่, แต่ในเวลาเดียวกัน, ก็เป็นเหตุผลสำหรับความกังวลใหม่. การบำบัดอาหารแข็งโดยรังสีไอออไนซ์สามารถให้ผลคล้ายกับการทำพาสเจอร์ไรซ์แบบความร้อนของของเหลว, เช่นนม. อย่างไรก็ตาม, การใช้คำว่าพาสเจอร์ไรซ์เย็นเพื่ออธิบายอาหารที่ผ่านการฉายรังสีทำให้เป็นที่ถกเถียงกัน, เพราะพาสเจอร์ไรซ์และการฉายรังสีเป็นกระบวนการที่แตกต่างกันโดยพื้นฐานอยู่แล้ว, ถึงแม้ว่าสุดท้ายความตั้งใจในบางกรณีอาจจะคล้ายกัน.
ผู้กล่าวร้ายของการฉายรังสีอาหารมีความกังวลเกี่ยวกับอันตรายต่อสุขภาพจากกัมมันตภาพรังสีที่ถูกสร้างขึ้นำ[ต้องการอ้างอิง]. นอกจากนี้, รายงานใหักับ 'สภาอเมริกันสำหรับวิทยาศาสตร์และสุขภาพ' ชื่อ "อาหารผ่านการฉายรังสี" กล่าวว่า: "ประเภทของแหล่งสร้างรังสีที่ได้รับการอนุมัติสำหรับการบำบัดอาหารมีระดับพลังงานที่เจาะจงต่ำกว่าขนาดที่อาจทำให้องค์ประกอบใดๆในอาหารกลายเป็นสารกัมมันตรังสี. อาหารที่ผ่านการฉายรังสีไม่ได้ปนเปื้อนกัมมันตรังสีมากไปกว่ากระเป๋าเดินทางผ่านสแกนเนอร์ X-ray ที่สนามบินหรือฟันที่ถูก X-ray"[11].
การฉายรังสีอาหารในขณะนี้ได้รับอนุญาตจากกว่า 40 ประเทศและปริมาณการคาดว่าจะเกิน 500,000 ตัน (490,000 ตันยาว; 550,000 ตันสั้น) เป็นประจำทุกปีทั่วโลก[12][13][14].
การฉายรังสีอาหารโดยหลักการเป็นเทคโนโลยีที่ไม่ใช่นิวเคลียร์. มันขึ้นอยู่กับการใช้รังสีที่อาจจะเกิดขึ้นจากเครื่องเร่งอนุภาคอิเล็กตรอนและการแปลงให้เป็น Bremsstrahlung (รังสีคลื่นแม่เหล็กไฟฟ้าที่ถูกปล่อยออกมา เมื่ออนุภาคที่มีประจุถูกเร่งให้เร็วขึ้น หรือถูกหน่วงให้ช้าลง รังสีเอกซ์จากเครื่องเอกซเรย์ทั่วไปก็เป็นรังสีชนิดนี้) แต่มันอาจจะยังใช้รังสีแกมมาจากการสลายตัวของนิวเคลียร์อีกด้วย. มีอุตสาหกรรมทั่วโลกที่ทำการประมวลโดยรังสีจากตัวเร่ง. การฉายรังสีอาหารเป็นเพียงการประยุกต์ใช้เฉพาะอย่าง (อังกฤษ: niche application) ชนิดหนึ่งเท่านั้นเมื่อเทียบกับการทำไปใช้กับอุปกรณ์การแพทย์, วัสดุพลาสติก, วัตถุดิบ, อัญมณี, สายเคเบิลและสายไฟอื่น ๆ
อุบัติเหตุ
แก้บทความหลัก: อุบัติเหตุจากนิวเคลียร์และการฉายรังสี, ความปลอดภัยนิวเคลียร์
อุบัติเหตุนิวเคลียร์, เพราะกองกำลังที่มีประสิทธิภาพมาเกี่ยวข้อง, มักจะมีอันตรายมาก. ในอดีต, เหตุการณ์ที่เกิดขึ้นครั้งแรกเกี่ยวข้องกับการรับรังสีอย่างร้ายแรง. มารี กูรีเสียชีวิตจากโรคโลหิตจางซึ่งเป็นผลมาจากระดับสูงจากการสัมผัสรังสีของเธอ. นักวิทยาศาสตร์สองคน, ชาวอเมริกันและแคนาดาตามลำดับ, แฮร์รี่ Daghlian และหลุยส์ SlotIn, เสียชีวิตหลังจากการจัดการที่ผิดพลาดของมวลพลูโตเนียมเดียวกัน. ซึ่งแตกต่างจากอาวุธธรรมดา, แสงที่รุนแรง, ความร้อน, และแรงระเบิดไม่ได้เป็นเพียงส่วนประกอบอันตรายเท่านั้นของอาวุธนิวเคลียร์. ประมาณครึ่งหนึ่งของการตายที่ฮิโรชิมาและนางาซากิเสียชีวิต 2-5 ปีหลังจากนั้นเนื่องจากการสัมผัสกับรังสี.
อุบัติเหตุนิวเคลียร์กับพลเรือนและอุบัติเหตุรังสีส่วนใหญ่เกี่ยวข้องกับโรงไฟฟ้านิวเคลียร์. ที่พบมากที่สุดคือการรั่วไหลของนิวเคลียร์ที่ทำให้คนงานสัมผัสกับวัสดุที่เป็นอันตราย. การหลอมละลายนิวเคลียร์ (อังกฤษ: nuclear meltdown) หมายถึงอันตรายที่รุนแรงมากขึ้นของการปล่อยวัสดุนิวเคลียร์ในสภาพแวดล้อมโดยรอบ. การ meltdowns ที่สำคัญที่สุดเกิดขึ้นที่เกาะทรีไมล์ในรัฐเพนซิลวาเนียและเชอร์โนบิลในยูเครนของโซเวียต. แผ่นดินไหวและสึนามิเมื่อวันที่ 11 มีนาคม 2011 ทำให้เกิดความเสียหายอย่างร้ายแรงต่อสามเครื่องปฏิกรณ์นิวเคลียร์และบ่อเก็บเชื้อเพลิงใช้แล้วที่โรงไฟฟ้านิวเคลียร์ฟุกุชิมะไดอิชิในประเทศญี่ปุ่น. เครื่องปฏิกรณ์ทางทหารที่ประสบการเกิดอุบัติเหตุที่คล้ายกันคือที่ Windscale ในสหราชอาณาจักรและ SL-1 ในประเทศสหรัฐอเมริกา.
อุบัติเหตุทางทหารมักจะเกี่ยวข้องกับการสูญหายหรือการจุดระเบิดที่ไม่คาดคิดของอาวุธนิวเคลียร์. การทดสอบ Castle Bravo ในปี 1954 ผลิตผลลัพธ์ที่มีขนาดใหญ่กว่าที่คาดไว้, ซึ่งปนเปื้อนหมู่เกาะใกล้เคียง, เรือประมงญี่ปุ่น (กับการเสียชีวิตไปหนึ่ง), และเพิ่มความกังวลเกี่ยวกับปลาที่ปนเปื้อนในญี่ปุ่น. ในปี 1950s ถึงปี 1970s, ระเบิดนิวเคลียร์หลายตัวได้หายไปจากเรือดำน้ำและเครื่องบิน, บางตัวไม่เคยได้รับการกู้คืน. ในช่วงยี่สิบปีที่ผ่านมา ได้เห็นการลดลงของการเกิดอุบัติเหตุดังกล่าว.
อ้างอิง
แก้- ↑ การปล่อยแสงจากสารบางชนิดโดยไม่อาศัยความร้อน แต่อาศัยพลังงานรูปอื่น เช่น รังสีเอกซ์ รังสีอัลตราไวโอเลต เป็นต้น เมื่อหยุดการให้พลังงาน สารก็ยังคงเปล่งแสงอยู่ชั่วระยะหนึ่ง ซึ่งแตกต่างกับการวาวแสง เมื่อหยุดให้พลังงานสารก็จะหยุดเปล่งแสงทันที [พจนานุกรมศัพท์ สสวท.]
- ↑ Henri Becquerel
- ↑ "Frequently Asked Questions #1". Radiation Effects Research Foundation. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2007-09-19. สืบค้นเมื่อ 2007-09-18.
- ↑ "The somatic effects of exposure to atomic radiation: The Japanese experience, 1947–1997". คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2020-05-11. สืบค้นเมื่อ 2014-12-08.
- ↑ "Nuclear-powered Ships". คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2013-02-14. สืบค้นเมื่อ 2014-12-10.
- ↑ nucleotide (นิวคลีโอไทด์) เป็นหน่วยย่อยของดีเอ็นเอและอาร์เอ็นเอ ประกอบด้วยเบสและหมู่ฟอสเฟตเชื่อมต่อกับน้ำตาล เบสที่พบในดีเอ็นเอและอาร์เอ็นเอได้แก่ adenine (A) guanine (G) และ cytosine (C) ที่แตกต่างคือ thymine (T) พบเฉพาะในดีเอ็นเอ ส่วน uracil (U) พบเฉพาะในอาร์เอ็นเอ น้ำตาลที่พบในดีเอ็นเอเป็นดีออกซีไรโบสและน้ำตาลไรโบสพบในอาร์เอ็นเอ ส่วนหมู่ฟอสเฟตเป็นตัวกลางในการเชื่อมต่อระหว่างนิวคลีโอไทด์โมเลกุลหนึ่งกับอีกโมเลกุลหนึ่งโดยเกิดพันธะฟอสโฟไดเอสเทอร์ ทำให้สายดีเอ็นเอและอาร์เอ็นเอยาวขึ้น แหล่งข้อมูล สุรินทร์ ปิยะโชคณากุล. "โครงสร้างและหน้าที่ของดีเอ็นเอ" ในพันธุวิศวกรรมเบื้องต้น. หน้า 5-41. กรุงเทพฯ : สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์, 2545. [วิทยาศาสตร์และเทคโนโลยี]
- ↑ อนุภาคมูลฐานที่มีมวลเท่ากับอิเล็กตรอนแต่มีประจุเป็นบวก เรียกอีกอย่างว่า “แอนติอิเล็กตรอน” เกิดจาก แพร์โพรดักชัน หรือจากการสลายกัมมันตรังสีของนิวไคลด์บางชนิด เช่น โซเดียม-22 (ดู antimatter; electron และ pair production ประกอบ) [นิวเคลียร์]
- ↑ [1]
- ↑ "Tritium Information". คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2017-09-21. สืบค้นเมื่อ 2014-12-11.
- ↑ 10.0 10.1 anon., Food Irradiation - A technique for preserving and improving the safety of food, WHO, Geneva, 1991
- ↑ "IRRADIATED FOODS Fifth Edition Revised and updated by Paisan Loaharanu May 2003 AMERICAN COUNCIL ON SCIENCE AND HEALTH" (PDF). คลังข้อมูลเก่าเก็บจากแหล่งเดิม (PDF)เมื่อ 2011-09-26. สืบค้นเมื่อ 2012-03-05.
- ↑ "NUCLEUS - Food Irradiation Clearances". คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2008-05-26. สืบค้นเมื่อ 2014-12-11.
- ↑ Food irradiation, Position of ADA เก็บถาวร 2016-02-16 ที่ เวย์แบ็กแมชชีน. J Am Diet Assoc. 2000;100:246-253. retrieved 2007-11-15.
- ↑ C.M. Deeley, M. Gao, R. Hunter, D.A.E. Ehlermann. The development of food irradiation in the Asia Pacific, the Americas and Europe เก็บถาวร 2017-02-18 ที่ เวย์แบ็กแมชชีน; tutorial presented to the International Meeting on Radiation Processing. Kuala Lumpur. 2006. last visited 2007-11-16. [ลิงก์เสีย]