เปิดเมนูหลัก

วอยเอจเจอร์ 1 (อังกฤษ: Voyager 1) เป็นยานสำรวจอวกาศแบบไร้คนขับซึ่งองค์การบริหารการบินและอวกาศแห่งชาติสหรัฐหรือองค์การนาซาได้ทำการปล่อยขึ้นสู่อวกาศเมื่อวันที่ 5 กันยายน ค.ศ. 1977 ภายใต้โครงการวอยเอจเจอร์ ปัจจุบันยานสำรวจปฏิบัติงานอยู่ในอวกาศเป็นเวลานานถึง 42 ปี 17 วัน ซึ่งยังคงสื่อสารกับโลกผ่านทางเครือข่ายสื่อสารข้อมูลห้วงอวกาศ (DSN) เพื่อรับคำสั่งประจำและส่งข้อมูลกลับมา ด้วยระยะห่างของยานสำรวจที่อยู่ห่างจากโลกราว 145 หน่วยดาราศาสตร์ (21.7 พันล้านกิโลเมตร, 13.5 พันล้านไมล์) เมื่อวันที่ 7 มิถุนายน ค.ศ. 2019[3] จึงถือได้ว่าเป็นวัตถุที่สร้างโดยมนุษย์ที่อยู่ไกลจากโลกมากที่สุด[4]

วอยเอจเจอร์ 1
Voyager logo.png
ตราภารกิจโครงการวอยเอจเจอร์
Voyager spacecraft.jpg
ภาพจำลองของยานวอยเอจเจอร์ 1
ประเภทภารกิจสำรวจดาวเคราะห์ชั้นนอก เฮลิโอสเฟียร์ และมวลสารระหว่างดาว
ผู้ดำเนินการNASA logo.svg นาซา
Jet Propulsion Laboratory logo.svg ห้องปฏิบัติการแรงขับเคลื่อนไอพ่น
COSPAR ID1977-084A[1]
SATCAT no.10321[2]
เว็บไซต์voyager.jpl.nasa.gov
ระยะภารกิจ
  • 42 ปี 17 วัน
  • สำรวจดาวเคราะห์: 3 ปี 3 เดือน 9 วัน
  • สำรวจช่องว่างระหว่างดาว: 38 ปี 9 เดือน 8 วัน (อยู่ระหว่างดำเนินการ)
ข้อมูลยานอวกาศ
ผู้ผลิตJet Propulsion Laboratory logo.svg ห้องปฏิบัติการแรงขับเคลื่อนไอพ่น
มวลขณะส่งยาน825.5 กก. (1,820 ปอนด์)
กำลังไฟฟ้า470 วัตต์ (วันที่ปล่อยยาน)
เริ่มต้นภารกิจ
วันที่ส่งขึ้น5 กันยายน ค.ศ. 1977, 12:56:00 UTC
จรวดนำส่งTitan_IIIE
ฐานส่งสหรัฐ ฐานปล่อยจรวด 41 ฐานทัพอากาศแหลมคะแนเวอรัล
บินผ่าน ดาวพฤหัสบดี
เข้าใกล้สุด5 มีนาคม ค.ศ. 1979
ระยะห่าง349,000 กิโลเมตร (217,000 ไมล์)
บินผ่าน ดาวเสาร์
เข้าใกล้สุด12 พฤศจิกายน ค.ศ. 1980
ระยะห่าง124,000 กิโลเมตร (77,000 ไมล์)
บินผ่าน ดวงจันทร์ไททัน (สำรวจชั้นบรรยากาศ)
เข้าใกล้สุด12 พฤศจิกายน ค.ศ. 1980
ระยะห่าง6,490 กิโลเมตร (4,030 ไมล์)
ยานสำรวจอวกาศที่สำคัญ
 

ภารกิจของยานสำรวจคือการบินเฉียดดาวพฤหัสบดี ดาวเสาร์ และดวงจันทร์ไททัน ดาวบริวารที่ใหญ่ที่สุดของดาวเสาร์ เดิมทีแล้วมีการวางแนวโคจรของยานเพื่อบินเฉียดดาวพลูโตโดยการไม่บินเฉียดดวงจันทร์ไททัน แต่ภายหลังมีการเปลี่ยนเป็นการบินเฉียดดวงจันทร์ไททันแทน เนื่องจากต้องการศึกษาชั้นบรรยากาศที่หนาแน่น ซึ่งเป็นที่สนใจของนักวิทยาศาสตร์มากในขณะนั้น[5][6][7] วอยเอจเจอร์ 1 ได้ทำการสำรวจสภาพอากาศ สภาพสนามแม่เหล็ก และวงแหวนของดาวพฤหัสบดีและดาวเสาร์ นอกจากนี้ยังเป็นยานสำรวจลำแรกที่ได้ถ่ายภาพเผยรายละเอียดดาวบริวารของดาวเคราะห์เหล่านี้อีกด้วย

ภายหลังเสร็จสิ้นภารกิจหลักในการบินเฉียดดาวเสาร์เมื่อวันที่ 12 พฤศจิกายน ค.ศ. 1980 ยานสำรวจ วอยเอจเจอร์ 1 ถือเป็นวัตถุสร้างโดยมนุษย์ชิ้นที่ 3 (จากทั้งหมด 5 ชิ้น) ที่โคจรด้วยความเร็วมากพอจนถึงระดับความเร็วหลุดพ้นจากระบบสุริยะ นอกจากนี้ในวันที่ 25 สิงหาคม ค.ศ. 2012 ยานสำรวจ วอยเอจเจอร์ 1 ยังเป็นยานอวกาศลำแรกที่ได้ข้ามผ่านอวกาศชั้นเฮลิโอพอสและเข้าสู่อวกาศชั้นมวลสารระหว่างดาว[8]

ในปี ค.ศ. 2017 ทีมงานของวอยเอจเจอร์ประสบความสำเร็จในการทดลองจุดชุดเครื่องยนต์ไอพ่นที่ใช้ในการควบคุมแนวโคจร (TCM) ซึ่งไม่มีการใช้งานมาตั้งแต่ปี ค.ศ. 1980 ส่งผลให้สามารถขยายเวลาทำภารกิจของยานไปได้อีกสองถึงสามปี[9]

มีการประมาณการว่ายานสำรวจ วอยเอจเจอร์ 1 จะยังสามารถทำภารกิจต่อไปได้จนถึงปี ค.ศ. 2025 หรือจนกว่าเครื่องกำเนิดไฟฟ้าด้วยความร้อนจากไอโซโทปรังสีจะจ่ายไฟได้ไม่เพียงพอความต้องการของอุปกรณ์ภายในยาน หลังจากนั้นยานจะโคจรเป็นวัตถุเร่ร่อนในอวกาศ

เบื้องหลังภารกิจแก้ไข

ประวัติแก้ไข

ในปี ค.ศ. 1964 นาซาได้เสนอแนวคิดโครงการแกรนด์ทัวร์ซึ่งมีเป้าหมายในการส่งยานสำรวจเพื่อทำการศึกษาดาวเคราะห์ภายนอกระบบสุริยะ และเริ่มดำเนินงานโครงการในตอนต้นยุค ค.ศ. 1970[10] ข้อมูลที่ได้รับจากยานสำรวจ ไพโอเนียร์ 10 ยังช่วยให้ทีมวิศวกรของยานสำรวจ วอยเอจเจอร์ สามารถออกแบบยานสำรวจเพื่อรับมือกับระดับกัมมันตรังสีที่รุนแรงของดาวพฤหัสบดีได้อีกด้วย[11]

เดิมทียานสำรวจ วอยเอจเจอร์ 1 ก็คือยานสำรวจ "มาริเนอร์ 11" ซึ่งเป็นส่วนหนึ่งของโครงการมาริเนอร์มาก่อน ภายหลังงบประมาณของโครงการถูกจำกัดลง ทำให้เป้าหมายของภารกิจจึงเน้นไปที่การสำรวจดาวพฤหัสบดีและดาวเสาร์เป็นหลัก ยานถูกเปลี่ยนชื่อเป็น มาริเนอร์ จูปิเตอร์-แซทเทิร์น (Mariner Jupiter-Saturn) แต่ภายหลังการดำเนินโครงการได้ระยะหนึ่ง มีการเปลี่ยนชื่อยานสำรวจอีกครั้งเป็น วอยเอจเจอร์ 1 เนื่องด้วยตัวยานได้ถูกออกแบบมาเพื่อทำภารกิจที่ยิ่งใหญ่กว่าโครงการมาริเนอร์[12]

ส่วนประกอบของยานฯแก้ไข

 
จานสื่อสารเกณฑ์ขยายสูงขนาดเส้นผ่านศูนย์กลาง 3.7 เมตร หรือ 12 ฟุต

ยานสำรวจ วอยเอจเจอร์ 1 ถูกสร้างขึ้นโดยศูนย์ปฏิบัติการเครื่องยนต์ไอพ่น (JPL)[13][14][15] ตัวยานขับเคลื่อนโดยเครื่องยนต์ไฮดราซีน 16 ตัว มีไจโรสโคปรักษาตำแหน่งแบบ 3 แกน และระบบควบคุมยานที่คอยรักษาทิศทางของเสาวิทยุบนยานให้ชี้มายังโลก อุปกรณ์เหล่านี้จะเรียกรวมว่าเป็นระบบควบคุมตำแหน่งและแนวโคจร (AACS) มาพร้อมกับระบบควบคุมสำรอง และเครื่องยนต์ไอพ่นสำรองอีก 8 ตัว นอกจากนี้ยังมีอุปกรณ์ตรวจวัดทางวิทยาศาสตร์รวมกว่า 11 ชิ้นเพื่อใช้ทำการศึกษาเหล่าดาวเคราะห์ที่ยานโคจรเข้าใกล้[16]

ระบบสื่อสารแก้ไข

ยานสำรวจ วอยเอจเจอร์ 1 ใช้ระบบการสื่อสารผ่านคลื่นวิทยุย่านความถี่สูงซึ่งออกแบบให้สามารถสื่อสารได้ไกลถึงนอกระบบสุริยะ ตัวยานประกอบไปด้วยจานสายอากาศทรงพาราโบลา แบบแคสซิเกรน (Cassegrain) ซึ่งมีเกณฑ์ขยายสูง ขนาดเส้นผ่านศูนย์กลาง 3.7 เมตร (12 ฟุต) ส่งสัญญาณและรับสัญญาณคลื่นวิทยุผ่านเครือข่ายสื่อสารข้อมูลห้วงอวกาศ (Deep Space Network: DSN) ที่มีสถานีฐานกระจายอยู่ทั่วพื้นโลก[17] ปกติแล้วยานจะส่งสัญญาณผ่านทางช่องสัญญาณ์ 18 โดยใช้ย่านความถี่ 2.3 จิกะเฮิรตซ์ หรือ 8.4 จิกะเฮิรตซ์ ในขณะที่การส่งสัญญาณจากโลกไปหาตัวยานจะทำผ่านย่านความถี่ 2.1 จิกะเฮิรตซ์ [18]

ในช่วงที่ยานสำรวจ วอยเอจเจอร์ 1 ไม่สามารถส่งข้อมูลมายังโลกโดยตรงได้ ข้อมูลทั้งหมดจะถูกบันทึกลงเทปบันทึกระบบดิจิตอล (DTR) ซึ่งสามารถบันทึกข้อมูลได้สูงสุด 64 กิโลไบต์ เพื่อรอการส่งกลับมายังโลกในครั้งถัดไป[19] โดยใช้เวลาประมาณ 20 ชั่วโมงในการส่งสัญญาณจากยานสำรวจ วอยเอจเจอร์ 1 กลับมายังโลก[3]

แหล่งพลังงานแก้ไข

ยานสำรวจ วอยเอจเจอร์ 1 ใช้พลังงานไฟฟ้าจากเครื่องกำเนิดไฟฟ้าด้วยความร้อนจากไอโซโทปรังสี หรืออาร์ทีจี (Radioisotope Thermoelectric Generator) รวม 3 เครื่อง ติดตั้งในลักษณะเป็นส่วนแขนยื่นออกจากตัวยาน เครื่องกำเนิดไฟฟ้าแต่ละเครื่องประกอบไปด้วยลูกบอลอัดเชื้อเพลิงพลูโตเนียม-238 (238Pu) ในรูปของพลูโตเนียมออกไซด์ (PuO2) ทั้งหมด 24 ลูก[20] กำลังไฟฟ้าวัดได้รวม 470 วัตต์ ณ วันที่ทำการปล่อยยาน[21] โดยพลังงานไฟฟ้าที่ได้จะลดลงเมื่อเวลาผ่านไป อันเป็นผลจากการสลายตัวของพลูโตเนียม-238 ที่มีค่าครึ่งชีวิตอยู่ที่ 87.7 ปี รวมถึงการเสื่อมสภาพของชุดเทอร์โมคัปเปิล อย่างไรก็ตามเครื่องกำเนิดไฟฟ้าอาร์ทีจีจะยังคงจ่ายพลังงานให้กับตัวยานได้อย่างเพียงพอต่อไปจนถึงปี ค.ศ. 2025[16][20]

ปัจจุบันปริมาณพลูโตเนียม-238 ใน วอยเอจเจอร์ 1 คงเหลือ 71.73% เทียบกับวันที่ปล่อยยาน และจะลดลงจนเหลือเพียง 56.5% ในปี ค.ศ. 2050

ระบบคอมพิวเตอร์แก้ไข

แทบทุกส่วนของตัวยานสำรวจทำงานโดยอัตโนมัติผ่านการควบคุมด้วยระบบคอมพิวเตอร์ ยกเว้นระบบถ่ายภาพแสงที่มองเห็นได้ซึ่งเป็นเพียงระบบเดียวที่ไม่ได้ทำงานแบบอัตโนมัติ แต่จะถูกควบคุมโดยชุดค่าพารามิเตอร์ในคอมพิวเตอร์ระบบย่อยข้อมูลการบิน (Flight Data Subsystem: FDS) ต่างจากกล้องถ่ายภาพในยานสำรวจยุคหลังจากปี ค.ศ. 1990 ที่เปลี่ยนมาใช้ระบบควบคุมแบบอัตโนมัติทั้งหมดแล้ว[22]

ระบบย่อยคอมพิวเตอร์สั่งการ (Computer Command Subsystem: CCS) ประกอบไปด้วยชุดคำสั่งแบบสำเร็จ เช่น ชุดคำสั่งถอดรหัส ชุดคำสั่งตรวจสอบและแก้ไขข้อบกพร่อง ชุดคำสั่งควบคุมทิศทางของเสาอากาศ และชุดคำสั่งควบคุมตำแหน่งยาน คอมพิวเตอร์ส่วนนี้เป็นส่วนที่พัฒนามาจากคอมพิวเตอร์ที่ใช้ในยานโครงการไวกิ้ง (Viking Program) ช่วงยุค ค.ศ. 1970 ฮาร์ดแวร์แบบปรับแต่งเอง (custom-built) ที่ใช้สำหรับระบบย่อยคอมพิวเตอร์สั่งการของยานสำรวจทั้งสองลำในโครงการ โวเอจเจอร์ จะเหมือนทุกประการ มีเพียงการปรับแต่งโปรแกรมเล็กน้อยเพราะมีระบบย่อยทางวิทยาศาสตร์ที่ยานอีกลำไม่มี[23]

ระบบย่อยควบคุมตำแหน่งและแนวโคจร (Attitude and Articulation Control Subsystem: AACS) เป็นระบบที่ใช้ในการควบคุมตำแหน่งและทิศทางของตัวยาน คอยควบคุมองศาของเสาอากาศยานให้ชี้มายังโลก ควบคุมการเปลี่ยนตำแหน่ง และบังคับทิศทางของยานเพื่อทำการถ่ายภาพวัตถุและพื้นผิว ระบบย่อยนี้สำหรับยานสำรวจในโครงการ โวเอจเจอร์ จะเหมือนทุกประการ[24][25]

เครื่องมือวัดทางวิทยาศาสตร์แก้ไข

ดูบทความหลักที่: โครงการวอยเอจเจอร์
ประเภท ตัวย่อ รายละเอียดการทำงาน
ระบบวิทยาศาสตร์การถ่ายภาพ (Imaging Science System)
ปิดการทำงานแล้ว
ISS ทำงานโดยอาศัยกล้องถ่ายภาพ 2 ชุด คือ กล้องมุมมองกว้าง และกล้องมุมมองแคบ เพื่อให้ได้ภาพถ่ายของดาวเคราะห์หรือวัตถุที่ยานเคลื่อนผ่านตลอดภารกิจ เพิ่มเติม
ตัวกรองแสง
กล้องมุมมองแคบ[26]
ชนิด ความยาวคลื่น สเปกตรัม ไวต่อแสง
แบบใส 280–640 นาโนเมตร
แสงยูวี 280–370 นาโนเมตร
สีม่วง 350–450 นาโนเมตร
สีน้ำเงิน 430–530 นาโนเมตร
สีเขียว 530–640 นาโนเมตร
สีส้ม 590–640 นาโนเมตร
กล้องมุมมองกว้าง[27]
ชนิด ความยาวคลื่น สเปกตรัม ไวต่อแสง
แบบใส 280–640 นาโนเมตร
สีม่วง 350–450 นาโนเมตร
สีน้ำเงิน 430–530 นาโนเมตร
CH4-U 536–546 นาโนเมตร
สีเขียว 530–640 นาโนเมตร
Na-D 588–590 นาโนเมตร
สีส้ม 590–640 นาโนเมตร
CH4-JST 614–624 นาโนเมตร
ระบบวิทยาศาสตร์วิทยุ (Radio Science System)
ปิดการใช้งานแล้ว
RSS ทำงานโดยอาศัยระบบสื่อสารของยานโวเอจเจอร์ในการเก็บข้อมูลลักษณะทางกายภาพของดาวเคราะห์และดาวบริวาร (ชั้นบรรยากาศ มวล สนามแรงโน้มถ่วง ความหนาแน่น) อีกทั้งยังทำการเก็บข้อมูลปริมาณและขนาดของวัตถุที่อยู่ในวงแหวนของดาวเสาร์ รวมถึงขนาดของวงแหวนอีกด้วย เพิ่มเติม
อินฟราเรด อินเตอร์เฟอโรมิเตอร์ สเปกโทรมิเตอร์ (Infrared Interferometer Spectrometer)
ปิดการทำงานแล้ว
IRIS ทำการสำรวจดุลพลังงาน และองค์ประกอบของชั้นบรรยากาศแบบเฉพาะพื้นที่และแบบทั่วทั้งดาว นอกจากนี้ยังเก็บข้อมูลรายละเอียดของระดับอุณภูมิในแต่ละชั้นบรรยากาศของดาวเคราะห์และเหล่าดาวบริวาร รวมถึงองค์ประกอบ สมบัติทางความร้อน และขนาดของวัตถุที่อยู่ในวงแหวนของดาวเสาร์ เพิ่มเติม
อัลตราไวโอเลต สเปกโทรมิเตอร์ (Ultraviolet Spectrometer)
ปิดการทำงานแล้ว
UVS ออกแบบมาเพื่อทำการวัดค่าต่างๆ ของชั้นบรรยากาศ รวมถึงการวัดค่าของการแผ่รังสี เพิ่มเติม
ฟลักซ์เกทแมกนิโทมิเตอร์แบบสามแกน (Triaxial Fluxgate Magnetometer)
ยังทำงานอยู่
MAG ออกแบบมาเพื่อทำการศึกษาสนามแม่เหล็ก ของดาวพฤหัสบดีและดาวเสาร์ ปฏิกิริยาระหว่างพายุสุริยะที่มีต่อแม็กนีโตสเฟียร์ของดาวเคราะห์แต่ละดวง สนามแม่เหล็กของอวกาศชั้นนอก ไปจนถึงเส้นขอบระหว่างลมสุริยะกับสนามแม่เหล็กของอวกาศระหว่างดาว เพิ่มเติม
พลาสมา สเปกโทรมิเตอร์ (Plasma Spectrometer)
ระบบขัดข้อง
PLS ทำการศึกษาคุณสมบัติของอนุภาคไออนในพลาสมาและตรวจหาจำนวนของอิเล็กตรอนที่มีพลังงานในช่วง 5 อิเล็กตรอนโวลต์ถึง 1 กิโลอิเล็กตรอนโวลต์ เพิ่มเติม
เครื่องตรวจวัดอนุภาคมีประจุพลังงานต่ำ (Low Energy Charged Particle Instrument)
ยังทำงานอยู่
LECP ทำการวัดความค่าความเปลี่ยนแปลงของฟลักซ์พลังงาน การกระจายตัวเชิงมุมของไอออนและอิเล็กตรอน ตลอดจนวัดความเปลี่ยนแปลงของพลังงานในสารประกอบของไอออน เพิ่มเติม
เครื่องตรวจจับรังสีคอสมิก (Cosmic Ray System)
ยังทำงานอยู่
CRS ค้นหาแหล่งกำเนิดและกระบวนการเร่ง ประวัติในช่วงชีวิตและการพัวพันเชิงพลวัตของรังสีคอสมิกระหว่างดาว (interstellar cosmic ray) การสังเคราะห์นิวเคลียสของธาตุองค์ประกอบในแหล่งกำเนิดของรังสีคอสมิก พฤติกรรมของรังสีคอสมิกในมวลสารระหว่างดาว รวมถึงสภาพแวดล้อมของอนุภาคพลังงานสูงของดาวเคราะห์ที่ถูกกักไว้ เพิ่มเติม
ระบบวิเคราะห์ดาราศาสตร์วิทยุ (Planetary Radio Astronomy Investigation)
ปิดการทำงานแล้ว
PRA อาศัยการทำงานของเครื่องรับวิทยุแบบกวาดความถี่เพื่อศึกษาคลื่นวิทยุที่ปล่อยออกมาจากดาวพฤหัสและดาวเสาร์ เพิ่มเติม
เครื่องวัดการโพลาไรซ์ของแสง (Photopolarimeter System)
ระบบขัดข้อง
PPS อาศัยการทำงานของกล้องโทรทรรศน์ที่มีโพลาไรเซอร์ในการเก็บข้อมูลรายละเอียดและองค์ประกอบของพื้นผิว รวมถึงคุณสมบัติการกระจายตัวและความหนาแน่นของชั้นบรรยากาศของดาวพฤหัสและดาวเสาร์ เพิ่มเติม
ระบบตรวจจับคลื่นพลาสมา (Plasma Wave System)
ยังทำงานอยู่
PWS อาศัยการทำงานของเสาอากาศที่ยืดหดได้ในการวัดปฏิกิริยาของคลื่นอิเล็กตรอนบริเวณรอบดาวเคราะห์กับช่วงมวลสารระหว่างดาว โดยการตรวจวัดค่าความเปลี่ยนแปลงของสนามไฟฟ้าเมื่อเสาอากาศเคลื่อนผ่านกลุ่มเมฆประจุไฟฟ้า เพิ่มเติม
ภาพของยานสำรวจ วอยเอจเจอร์ 1
ยาน วอยเอจเจอร์ 1 ในหอจำลองสภาพอวกาศ 
แผ่นจานทองคำ ถูกติดตั้งไปกับยาน วอยเอจเจอร์ 1 
Edward C. Stone อดีตผู้อำนวยการการของนาซา ถ่ายภาพคู่กับแบบจำลองของยาน วอยเอจเจอร์ 
ผังแสดงตำแหน่งของเครื่องมือทางวิทยาศาสตร์ 
  วิกิมีเดียคอมมอนส์มีสื่อเกี่ยวกับ the Voyager spacecraft

รายละเอียดภารกิจแก้ไข

ช่วงเวลาการเดินทางแก้ไข

 

แนวเส้นทางวิถีโค้งจากโลกของยาน วอยเอจเจอร์ 1 ก่อนเริ่มออกนอกสุริยวิถีที่ดาวเสาร์ในปี ค.ศ. 1981 ปัจจุบันกำลังมุ่งหน้าเข้าสู่กลุ่มดาวคนแบกงู

วันที่ เหตุการณ์
5 กันยายน 1977 ทำการปล่อยยาน ณ เวลา 12:56:00 (UTC)
10 ธันวาคม 1977 เดินทางเข้าสู่แถบดาวเคราะห์น้อย
19 ธันวาคม 1977 ระยะห่างจากโลกของยาน วอยเอจเจอร์ 1 เริ่มแซงยาน วอยเอจเจอร์ 2 (ดูแผนผัง)
8 กันยายน 1978 เดินทางออกจากแถบดาวเคราะห์น้อย
6 มกราคม 1979 เริ่มภารกิจการสำรวจดาวพฤหัสบดี
29 มกราคม 1980 ปิดการทำงานระบบตรวจวัดโพลาไรซ์ของแสง (PPS) เนื่องจากการเสื่อมสภาพ
22 สิงหาคม 1980 เริ่มภารกิจการสำรวจดาวเสาร์
14 ธันวาคม 1980 ขยายภารกิจการสำรวจนอกระบบสุริยะ
14 กุมภาพันธ์ 1990 ภาพถ่ายสุดท้ายของโครงการวอยเอจเจอร์ที่ได้จากยาน วอยเอจเจอร์ 1 ซึ่งภายหลังถูกนำมาประกอบเป็นภาพครอบครัวสุริยะ จากนั้นปิดการทำงานของกล้องถ่ายภาพทั้ง 2 ชุดเพื่อสงวนพลังงาน
17 กุมภาพันธ์ 1998 วอยเอจเจอร์ 1 ทำสถิติวัตถุที่สร้างโดยมนุษย์ที่อยู่ไกลจากดวงอาทิตย์มากที่สุดซึ่งยาน ไพโอเนียร์ 10 เคยทำไว้ที่ระยะ 69.419 หน่วยดาราศาสตร์ ยานเคลื่อนที่ออกห่างจากดวงอาทิตย์มากกว่า 1 หน่วยดาราศาสตร์ต่อปี เร็วกว่ายาน ไพโอเนียร์ 10 เช่นกัน
3 มิถุนายน 1998 ปิดการทำงานระบบอินฟราเรดอินเตอร์เฟอโรมิเตอร์สเปกโทรมิเตอร์ (IRIS) เพื่อสงวนพลังงาน
16 ธันวาคม 2004 เคลื่อนผ่านชั้นกำแพงกระแทกที่ระยะ 94 หน่วยดาราศาสตร์ และเข้าสู่ชั้นเฮลิโอชีท
1 กุมภาพันธ์ 2007 ปิดการทำงานระบบพลาสมาสเปกโทรมิเตอร์ (PLS) จากการเสื่อมสภาพ
15 มกราคม 2008 ปิดการทำงานระบบวิเคราะห์ดาราศาสตร์วิทยุ (PRA) เพื่อสงวนพลังงาน
25 สิงหาคม 2012 ผ่านเข้าสู่อวกาศชั้นเฮลิโอพอสที่ระยะ 121 หน่วยดาราศาสตร์ และเข้าสู่อวกาศระหว่างดาว
7 กรกฎาคม 2014 ยืนยันตำแหน่งของยานอยู่ในอวกาศระหว่างดาว
19 เมษายน 2016 ปิดการทำงานระบบอัลตราไวโอเลตสเปกโทรมิเตอร์ (UVS) เพื่อสงวนพลังงาน
28 พฤศจิกายน 2017 ทำการจุดเครื่องยนต์ควบคุมเส้นแนวโคจร (TCM) อีกครั้งนับตั้งแต่ปี 1980[28]

การปล่อยยานและแนวโคจรแก้ไข

 
ภาพเคลื่อนไหวแสดงแนวโคจรของ วอยเอจเจอร์ 1 ระหว่างเดือนกันยายน ปี 1977 ถึงวันที่ 31 ธันวาคม 1981       วอยเอจเจอร์ 1 ·       โลก ·       ดาวพฤหัสบดี ·       ดาวเสาร์ ·       ดวงอาทิตย์
 
วอยเอจเจอร์ 1 บนส่วนหัวของจรวดนำส่ง Titan IIIE

ยานสำรวจ วอยเอจเจอร์ 1 ถูกส่งขึ้นไปในอวกาศเมื่อวันที่ 5 กันยายน ค.ศ. 1977 ณ แท่นปล่อยจรวด 41 ฐานทัพอากาศแหลมคะแนเวอรัล ด้วยจรวดนำส่ง Titan IIIE ประมาณ 2 สัปดาห์หลังจากยานสำรวจ วอยเอจเจอร์ 2 ถูกปล่อยขึ้นสู่อวกาศไปก่อนเมื่อวันที่ 20 สิงหาคมปีเดียวกัน อย่างไรก็ตาม แม้จะถูกส่งขึ้นอวกาศช้ากว่ายาน วอยเอจเจอร์ 2 แต่ยาน วอยเอจเจอร์ 1 ก็เดินทางถึงดาวพฤหัสบดีและดาวเสาร์ได้ก่อน[29] ด้วยแนวโคจรที่สั้นกว่า[30]

 
แนวโคจรของยาน วอยเอจเจอร์ 1 ผ่านระบบดาวพฤหัสบดี

บินเฉียดดาวพฤหัสบดีแก้ไข

ดูบทความหลักที่: การสำรวจดาวพฤหัสบดี

ยานสำรวจ วอยเอจเจอร์ 1 เริ่มทำการถ่ายภาพดาวพฤหัสบดีในปี ค.ศ. 1979 โดยบินเฉียดใกล้มากที่สุดที่ระยะห่างประมาณ 349,000 กิโลเมตร (217,000 ไมล์) จากจุดศูนย์กลางดาวเมื่อวันที่ 5 มีนาคม ค.ศ. 1979[29] และด้วยตำแน่งของยานที่อยู่ใกล้ดาวพฤหัสบดี ทำให้ได้ภาพถ่ายที่มีรายละเอียดที่มากขึ้น ส่งผลให้ภารกิจการสังเกตการณ์ระบบของดาวพฤหัสบดีซึ่งได้แก่ เหล่าดาวบริวาร วงแหวน สนามแม่เหล็ก และสภาพแวดล้อมของแถบรังสีแวนแอลเลน (Van Allen Belts) เสร็จสิ้นภายใน 48 ชั่วโมงเท่านั้น ภารกิจการถ่ายภาพระบบดาวพฤหัสบดีเสร็จสิ้นลงในเดือนเมษายน ค.ศ. 1979

การค้นพบภูเขาไฟที่ยังคุกรุ่นอยู่บนดวงจันทร์ไอโอ ถือว่าเป็นการค้นพบที่สร้างความฮือฮาที่สุด นับเป็นครั้งแรกที่มีการค้นพบภูเขาไฟมีพลังบนดาวดวงอื่นในระบบสุริยะนอกเหนือจากบนโลก อีกทั้งภูเขาไฟที่ครุกรุ่นเหล่านี้ยังส่งอิทธิพลไปยังดาวพฤหัสบดีด้วย ดวงจันทร์ไอโอถือเป็นแหล่งของสสารหลักที่แผ่ไปทั่วชั้นแม็กนีโตสเฟียร์ (บริเวณโดยรอบของดาวฤกษ์ที่ได้รับอิทธิพลอย่างรุนแรงจากสนามแม่เหล็ก) ของดาวพฤหัสบดี โดยมีการค้นพบร่องรอยของซัลเฟอร์ ออกซิเจน และโซเดียมที่เกิดจากการปะทุของภูเขาไฟบนดวงจันทร์ไอโอปะปนอยู่ในขอบนอกของชั้นแม็กนีโตสเฟียร์ของดาวพฤหัสบดี[29]

ยานสำรวจ วอยเอจเจอร์ ทั้งสองลำได้เผยการค้นพบที่สำคัญของดาวพฤหัสบดีเป็นจำนวนมาก เช่น เหล่าดาวบริวาร แถบกัมมันตรังสี และวงแหวนของดาวพฤหัสบดีที่ไม่เคยค้นพบมาก่อน

  วิกิมีเดียคอมมอนส์มีสื่อเกี่ยวกับ the Voyager 1 Jupiter encounter

บินเฉียดดาวเสาร์แก้ไข

ดูบทความหลักที่: การสำรวจดาวเสาร์

ยานสำรวจ วอยเอจเจอร์ ทั้งสองลำประสบความสำเร็จในการโคจรโดยอาศัยแรงโน้มถ่วง (gravitational assist trajectory) ไปยังดาวเสาร์ อีกทั้งได้ทำการสำรวจดาวเสาร์ รวมถึงวงแหวน และเหล่าดาวบริวารของดาวเสาร์เป็นที่เรียบร้อยแล้ว ยานสำรวจ วอยเอจเจอร์ 1 เดินทางมาถึงดาวเสาร์ในเดือนพฤศจิกายน ปี ค.ศ. 1980 และเดินทางเข้าใกล้มากที่สุด โดยห่างจากขอบบนของกลุ่มเมฆ (clound-tops) บนดาวที่ระยะ 124,000 กิโลเมตร (77,000 ไมล์) ในวันที่ 12 พฤศจิกายน ค.ศ. 1980 ซึ่งกล้องบนยานได้ตรวจพบโครงสร้างอันสลับซับซ้อนบนวงแหวนของดาวเสาร์และใช้เซ็นเซอร์ระยะไกลทำการศึกษาชั้นบรรยากาศของทั้งดาวเสาร์และดวงจันทร์ไททัน ดาวบริวารที่ใหญ่ที่สุด[31]

จากการสำรวจพบว่าชั้นบรรยากาศส่วนบนของดาวเสาร์ประกอบไปด้วยฮีเลียมอยู่ประมาณร้อยละ 7 (คิดเป็นร้อยละ 11 ของชั้นบรรยากาศบนดาวพฤหัสบดี) ขณะที่องค์ประกอบที่เหลือคือไฮโดรเจน เนื่องจากมีการคาดการณ์ว่าฮีเลียมปริมาณมหาศาลจะกระจุกตัวอยู่บริเวณชั้นในของดาวเสาร์เช่นเดียวกับที่พบบนดาวพฤหัสบดีและดวงอาทิตย์ ส่วนฮีเลียมปริมาณเบาบางที่พบในชั้นบรรยากาศส่วนบนอาจแทรกลงมาด้านล่างอย่างช้าๆ ผ่านไฮโดรเจนซึ่งมีมวลน้อยกว่า ซึ่งนั่นอาจเป็นเหตุผลว่าความร้อนส่วนเกินบนดาวเสาร์ที่แผ่ออกมานั้นได้รับมาจากดวงอาทิตย์นั่นเอง นอกจากยังพบว่ามีกระแสลมแรงพัดอยู่บนพื้นผิวดาวเสาร์ ความเร็วลมใกล้เส้นศูนย์สูตรสูงถึง 500 เมตรต่อวินาที (1,100 ไมล์ต่อชั่วโมง) โดยกระแสลมส่วนใหญ่จะพัดไปทางทิศตะวันออก[30]

มีการตรวจพบปรากฏการณ์คล้ายออโรราซึ่งเกิดจากรังสีอัลตราไวโอเลตที่ปลดปล่อยออกมาจากไฮโดรเจนบริเวณเขตละติจูดกลาง (mid-latitudes) ของชั้นบรรยากาศ และพบออโรราบริเวณละติจูดแถบขั้วโลก (มากกว่า 65 องศา) การเกิดออโรราบนชั้นบรรยากาศที่สูงเช่นนี้อาจก่อให้เกิดการเปลี่ยนรูปเป็นโมเลกุลเชิงซ้อนของไฮโดรคาร์บอนซึ่งจะเคลื่นที่ไปรวมกันอยู่ที่แถบเส้นศูนย์สูตร ส่วนสาเหตุของการเกิดออโรราบริเวณเขตละติจูดกลางที่พบได้เฉพาะบริเวณที่มีแสงแดดส่องถึงนั้นยังคงเป็นปริศนา แต่คาดการณ์ว่าอาจเกิดจากการระเบิดของอิเล็กตรอนและไอออนซึ่งเป็นสาเหตุเดียวกับการเกิดออโรราที่พบบนโลก ยานวอยเอจเจอร์ทั้งสองลำได้ทำการวัดคาบการหมุนรอบตัวเอง (เวลาในหนึ่งวัน) ของดาวเสาร์พบว่าใช้เวลา 10 ชั่วโมง 39 นาที 24 วินาที[31]

ภารกิจของยาน วอยเอจเจอร์ 1 ยังรวมถึงการบินเฉียดดวงจันทร์ไททัน ดวงจันทร์ที่ใหญ่ที่สุดของดาวเสาร์ ซึ่งมีการค้นพบการมีอยู่ของชั้นบรรยากาศจากภาพถ่ายที่ได้จากยาน ไพโอเนียร์ 11 ในปี ค.ศ. 1979 ระบุว่ามีชั้นบรรยากาศที่หนาแน่นและซับซ้อน ซึ่งทำให้เป็นที่สนใจของนักวิทยาศาสตร์ในเวลาต่อมา การบินเฉียดดวงจันทร์ไททันเกิดขึ้นเมื่อยานพยายามเดินทางเข้าสู่ระบบของดาวเสาร์โดยพยายามหลีกเลี่ยงการปะทะที่อาจส่งผลต่อการสำรวจ ในที่สุดยานก็เข้าใกล้ที่ระยะประมาณ 4,000 ไมล์ (6,400 กิโลเมตร) จากด้านหลังดวงจันทร์ไททันหากมองจากโลก เครื่องมือบนยานทำการตรวจวัดปฏิกิริยาระหว่างชั้นบรรยากาศกับแสงอาทิตย์ มีการใช้คลื่นวิทยุของยานเพื่อทำการค้นหาองค์ประกอบ ความหนาแน่น และความดันของชั้นบรรยากาศ นอกจากนี้ยังทำการวัดมวลของดวงจันทร์ไททันโดยอาศัยการสังเกตแรงโน้มถ่วงที่กระทำต่อแนวโคจรของยาน ชั้นบรรยากาศที่ปกคลุมอย่างหนาแน่นกลายเป็นอุปสรรคทำให้ไม่สามารถมองทะลุถึงพื้นผิวได้ แต่ข้อมูลต่างๆ ที่เก็บได้จากชั้นบรรยากาศทำให้สามารถคาดการณ์ได้ว่ามีทะเลสาบโฮโดรคาร์บอนเหลวอยู่บนพื้นผิวดาว[32]

เนื่องภารกิจการสำรวจดวงจันทร์ไททันถูกจัดให้เป็นภารกิจสำคัญ ดังนั้นแนวโคจรของยาน วอยเอจเจอร์ 1 จึงถูกออกแบบให้บินเฉียดดวงจันทร์ไททันให้มากที่สุด ส่งผลให้ยานเคลื่อนผ่านขั้วโลกใต้ของดาวเสาร์และหลุดออกจากระนาบสุริยวิถี ซึ่งทำให้ภารกิจการสำรวจดาวเคราะห์นั้นสิ้นสุดลงไปด้วย[33] หากยาน วอยเอจเจอร์ 1 ล้มเหลวในการเข้าใกล้เพื่อทำการสำรวจดวงจันทร์ไททัน ทางนาซ่าก็ยังสามารถปรับเปลี่ยนเส้นทางของยาน วอยเอจเจอร์ 2 มาทำภารกิจนี้แทนได้[32]:94 โดยไม่โคจรผ่านดาวยูเรนัสและดาวเนปจูน[5] นอกจากนี้ในแผนเดิมแนวโคจรของยาน วอยเอจเจอร์ 1 จะไม่ผ่านดาวยูเรนัสหรือดาวเนปจูน[32]:155 แต่สามารถปรับเปลี่ยนเส้นทางภายหลังได้โดยการไม่บินเฉียดดวงจันทร์ไททัน อีกทั้งยังสามารถเดินทางจากดาวเสาร์ไปยังดาวพลูโตได้ภายในปี ค.ศ. 1986 อีกด้วย[7]

  วิกิมีเดียคอมมอนส์มีสื่อเกี่ยวกับ the Voyager 1 Saturn encounter

โคจรออกจากเฮลิโอสเฟียร์แก้ไข

 
ภาพครอบครัวสุริยะที่ได้จากยานสำรวจ วอยเอเจอร์ 1
 
ตำแหน่งของยาน วอยเอจเจอร์ 1 เหนือระนาบสุริยะวิถีเมื่อวันที่ 14 กุมภาพันธ์ ค.ศ. 1990

ในวันที่ 14 กุมภาพันธ์ ค.ศ. 1990 ยานสำรวจ วอยเอจเจอร์ 1 ได้ทำการถ่ายภาพครอบครัวสุริยะ (family portrait) จากมุมมองนอกระบบสุริยะได้เป็นครั้งแรกในประวัติศาสตร์[34] ซึ่งรวมถึงภาพถ่ายของโลกที่รู้จักกันในชื่อเพลบลูดอต ก่อนที่จะทำการปิดการทำงานของอุปกรณ์กล้องถ่ายภาพเพื่อสงวนพลังงานสำหรับระบบอื่นในยานหลังจากนั้น เนื่องจากซอฟต์แวร์ของระบบกล้องถ่ายภาพทั้งหมดได้ถูกลบออกหมดแล้ว จึงเป็นการยากที่จะเปิดระบบนี้ขึ้นมาใช้งานอีกครั้ง นอกจากนี้ยังไม่มีซอฟต์แวร์และคอมพิวเตอร์ที่ใช้ในการวิเคราะห์ภาพถ่ายจากยานบนโลกอีกแล้วเช่นกัน[5]

ในวันที่ 17 กุมภาพันธ์ ค.ศ. 1998 ยานสำรวจ วอยเอจเจอร์ 1 โคจรที่ระยะห่าง 69 หน่วยดาราศาสตร์จากดวงอาทิตย์ ซึ่งมากกว่าระยะที่ยานไพโอเนียร์ 10 ที่เคยเป็นยานอวกาศที่โคจรห่างจากโลกมากที่สุด[35][36] นอกจากนี้ยานยังเดินทางด้วยความเร็วประมาณ 17 กิโลเมตรต่อวินาที (11 ไมล์ต่อวินาที)[37] ซึ่งเป็นความเร็วถอยห่างจากดวงอาทิตย์ที่มากที่สุดเมื่อเทียบกับยานอวกาศทุกลำ[38]

ยาน วอยเอจเจอร์ 1 ได้เดินทางเข้าสู่อวกาศระหว่างดาว มีการใช้อุปกรณ์ตรวจวัดเพื่อทำการศึกษาระบบสุริยะอย่างต่อเนื่อง นักวิทยาศาสตร์ของศูนย์ปฏิบัติการเครื่องยนต์ไอพ่น (JPL) ได้เปิดใช้งานอุปกรณ์ปล่อยคลื่นพลาสมาที่ติดตั้งอยู่บนทั้งยาน วอยเอจเจอร์ 1 และ 2 เพื่อทำการศึกษาเฮลิโอพอส ซึ่งเป็นแนวเขตที่ลมสุริยะได้ถูกหยุดลงเพราะเป็นบริเวณแรงดันของมวลสารระหว่างดาวกับลมสุริยะเข้าสู่สมดุลกัน[39] ในปี ค.ศ. 2013 ยานสำรวจโคจรด้วยความเร็วสัมพัทธ์กับดวงอาทิตย์ประมาณ 17,030 เมตรต่อวินาที (55,900 ฟุตต่อวินาที)[40] และในปัจจุบันยาน วอยเอจเจอร์ 1 โคจรโดยคงความเร็วคงที่ 325 ล้านไมล์ (523×106 กิโลเมตร) ต่อปี[41] หรือประมาณ 1 ปีแสงใน 18,000 ปี

กำแพงกระแทกแก้ไข

 
ความเร็วของยาน วอยเอจเจอร์ 1 และ 2 และระยะห่างจากดวงอาทิตย์

เหล่านักวิทยาศาสตร์จากห้องปฏิบัติการฟิสิกส์ประยุกต์ของมหาวิทยาลัยจอนส์ฮอปกินส์เชื่อว่ายาน วอยเอจเจอร์ 1 ได้เดินทางเข้าสู่ชั้นกำแพงกระแทก (termination shock) ในเดือนกุมภาพันธ์ ค.ศ. 2003[42] บริเวณนี้เป็นจุดที่ลมสุริยะชะลอความเร็วลงจนช้ากว่าความเร็วของเสียง (subsonic speed) หรือต่ำกว่า 100 กิโลเมตรต่อวินาที แต่ก็ยังมีข้อโต้แย้งกันในหมู่นักวิทยาศาสตร์กลุ่มอื่นๆ มีการถกประเด็นนี้ในวารสารวิชาการเนเจอร์ ฉบับวันที่ 6 พฤศจิกายน ค.ศ. 2003[43] โดยประเด็นนี้จะยังคงต้องถกเถียงดันต่อไปจนกว่าจะมีข้อมูลใหม่ที่สามารถมายืนยันได้ อีกทั้งอุปกรณ์ตรวจจับลมสุริยะที่ติดตั้งไว้บนยานได้หยุดการทำงานไปตั้งแต่ปี ค.ศ. 1990 ทำให้การตรวจหาชั้นกำแพงกระแทกทำได้โดยอาศัยข้อมูลที่ได้จากอุปกรณ์ตัวอื่นแทน[44][45][46]

 
ภาพเพลบลูดอตเผยให้เห็นตำแหน่งของโลกจากระยะ 6 พันล้านกิโลเมตร (จุดเล็กสีฟ้าอ่อนประมาณกึ่งกลางของแถบสีน้ำตาลทางด้านขวา) ท่ามกลางความมืดมิดของห้วงอวกาศ

ในเดือนพฤษภาคม ค.ศ. 2005 ทางนาซาได้เผยแพร่บทความสรุปผลว่ายานสำรวจ วอยเอจเจอร์ 1 ได้โคจรเข้าสู่ห้วงอวกาศบริเวณที่เรียกว่าเฮลิโอชีท (heliosheath) โดยในงานประชุมทางวิทยาศาสตร์ที่จัดขึ้นที่สหภาพธรณีวิทยาอเมริกา (American Geophysical Union: AGU) เมืองนิวออร์ลีนส์ วันที่ 25 พฤษภาคม ค.ศ. 2005 ทาง ดร.เอ็ด สโตน (Dr. Ed Stone) ได้เสนอหลักฐานที่ยืนยันได้ว่ายานเดินทางผ่านชั้นกำแพงกระแทกในช่วงปลายปี ค.ศ. 2004[47] ซึ่งคาดว่าเกิดขึ้นในวันที่ 15 ธันวาคม ค.ศ. 2004 ที่ระยะห่างจากดวงอาทิตย์ประมาณ 94 หน่วยดาราศาสตร์[48][49]

เฮลิโอชีทแก้ไข

 
การบินเฉียดดาวฤกษ์ขนาดใหญ่ 4 ดวงเพื่อใช้ในการเคลื่อนที่แบบเหวี่ยงโดยอาศัยแรงโน้มถ่วง (gravity assists) ของยาน วอยเอจเจอร์ ทั้งสองลำ

ในวันที่ 31 มีนาคม ค.ศ. 2006 กลุ่มนักวิทยุสมัครเล่นจากองค์กรกิจการดาวเทียมวิทยุสมัครเล่น หรือ AMSAT ในประเทศเยอรมนี ได้รับสัญญาณคลื่นวิทยุจากยาน วอยเอจเจอร์ 1 ผ่านจานดาวเทียมขนาด 20 เมตร (66 ฟุต) ที่เมืองโบคุม สัญญาณที่พบได้รับการตรวจสอบและยืนยันแล้วโดยเทียบกับสัญญาณที่ได้จากเครือข่ายสื่อสารข้อมูลห้วงอวกาศ (DSN) ที่เมืองมาดริด ประเทศสเปน[50] ถือได้ว่าเป็นกลุ่มนักวิทยุสมัครเล่นกลุ่มแรกที่สามารถติดตามสัญญาณของยาน วอยเอจเจอร์ 1 ได้[50]

วันที่ 13 ธันวาคม ค.ศ. 2010 ไมีการยืนยันว่ายานสำรวจ วอยเอจเจอร์ 1 เดินทางผ่านขอบเขตของการขยายตัวของลมสุริยะ โดยใช้ข้อมูลที่ได้จากเครื่องตรวจวัดอนุภาคมีประจุพลังงานต่ำ (Low Energy Charged Particle: LECP) นักวิทยาศาสตร์ได้ตั้งข้อสันนิษฐานว่าลมสุริยะในบริเวณนี้มีทิศทางไหลย้อนกลับอันเนื่องมาจากกระแสลมระหว่างดาว (interstellar wind) ที่พยายามไหลต้านกับเฮลิโอสเฟียร์ และในเดือนมิถุนายน ค.ศ. 2010 มีการตรวจพบว่าลมสุริยะมีค่าคงที่เป็นศูนย์ ซึ่งสามารถใช้สนับสนุนข้อสันนิษฐานนี้ได้เป็นอย่างดี[51][52] ในวันนั้นยานโคจรห่างจากดวงอาทิตย์ประมาณ 116 หน่วยดาราศาสตร์ หรือประมาณ 17.3 พันล้านกิโลเมตร (10.8 พันล้านไมล์)[53]

ยานสำรวจ วอยเอจเจอร์ 1 ได้รับคำสั่งให้หมุนตัวยานเพื่อทำการตรวจวัดการเลี้ยวเบนของลมสุริยะของบริเวณนี้ในเดือนมีนาคม ค.ศ. 2011 (ประมาณ 33 ปีหลังการปล่อยยาน) ภายหลังการทดสอบที่แล้วเสร็จในเดือนกุมภาพันธ์ ทำให้ยานมีความพร้อมที่จะถูกควบคุมให้หมุนตัวได้อีกครั้ง โดยยังคงแนวโคจรไว้เช่นเดิม แต่จะหมุนตัวยานไป 70 องศาทวนเข็มนาฬิกาเมื่อเทียบกับโลกเพื่อทำการตรวจจับลมสุริยะ (ถือเป็นครั้งแรกที่มีการบังคับตัวยานครั้งใหญ่นับตั้งแต่การถ่ายภาพครอบครัวสุริยะในปี ค.ศ. 1990) โดยหลังจากการหมุนตัวยานในครั้งแรกพบว่าตัวยานสามารถหมุนตัวกลับมาหาดาวแอลฟาคนครึ่งม้า (α-Centauri) ซึ่งเป็นดาวนำทางของยาน วอยเอจเจอร์ 1 ได้โดยไม่พบปัญหาใดๆ และยังสามารถส่งสัญญาณกลับมายังโลกได้เหมือนเดิมอีกด้วย คาดว่ายาน วอยเอจเจอร์ 1 เดินทางเข้าสู่อวกาศระหว่างดาวไปแล้วโดยไม่ทราบวันเวลาแน่ชัด ในขณะยาน วอยเอจเจอร์ 2 ยังคงกำลังตรวจวัดการไหลออกของลมสุริยะที่ตำแหน่งใดตำแหน่งหนึ่งซึ่งคาดว่าน่าจะตามหลังยาน วอยเอจเจอร์ 1 ในแง่ของเหตุการณ์ที่ได้พบไปประมาณหลายเดือนหรือหลายปี[54][55]

ปัจจุบันตำแหน่งของยานสำรวจ วอยเอจเจอร์ 1 ในเดือนมิถุนายน ค.ศ. 2019 เทียบจากโลกตามพิกัดศูนย์สูตร (equatorial coordinates) คือเดคลิเนชันที่ 12 องศา 27 ลิปดา, ไรต์แอสเซนชันที่ 17 ชั่วโมง 14 นาที และละติจูดสุริยะที่ 35 องศา (ละติจูดสุริยะจะเปลี่ยนช้ามาก) ซึ่งเป็นตำแหน่งของกลุ่มดาวคนแบกงู (Ophiuchus)[5]

ในวันที่ 1 ธันวาคม ค.ศ. 2011 มีการประกาศว่ายาน วอยเอจเจอร์ 1 ได้ตรวจพบรังสีช่วงไลแมน-อัลฟา (Lyman-alpha) ที่มีจุดกำเนิดมาจากดาราจักรทางช้างเผือก (Milky Way) ได้เป็นครั้งแรก จากปกติยานจะพบแต่รังสีช่วงไลแมน-อัลฟาที่มาจากดาราจักรอื่นๆ รังสีที่มาจากดาราจักรทางช้างเผือกจะถูกรบกวนจากดวงอาทิตย์ ทำให้ไม่สามารถตรวจจับได้[56]

องค์การนาซาได้ลงประกาศในวันที่ 5 ธันวาคม ค.ศ. 2011 ว่ายาน วอยเอจเจอร์ 1 ได้โคจรเข้าสู่อวกาศพื้นที่ใหม่ที่เรียกว่า "cosmic purgatory" ซึ่งเป็นชื่อเรียกพื้นที่สแตกเนชัน (stagnation) กล่าวคือ ภายในพื้นที่นี้อนุภาคมีประจุที่ปลดปล่อยออกมาจากดวงอาทิตย์จะเคลื่อนที่ช้าลงและเริ่มเคลื่อนที่ย้อนกลับ และด้วยสนามแม่เหล็กของระบบสุริยะที่มากกว่าสนามแม่เหล็กของอวกาศระหว่างดาวถึงสองเท่านั้นได้ก่อให้เกิดเป็นแรงดันขึ้น อนุภาคมีพลังงานที่มีจุดกำเนิดมาจากระบบสุริยะจะลดลงเกือบกึ่งหนึ่ง ขณะที่มีการตรวจพบอิเล็กตรอนพลังงานสูงจากบริเวณภายนอกมากถึง 100 ทบ เส้นขอบส่วนในของพื้นที่สแตกเนชันนี้อยู่ห่างจากดวงอาทิตย์ประมาณ 113 หน่วยดาราศาสตร์[57]

เฮลิโอพอสแก้ไข

กราฟแสดงอัตราการตรวจพบอนุภาคของรังสีคอสมิกที่เพิ่มขึ้นอย่างรวดจากยานวอยเอจเจอร์ 1 (ตุลาคม 2011 ถึง ตุลาคม 2012)
กราฟแสดงอัตราการตรวจพบอนุภาคของลมสุริยะที่ลดลงอย่างรวดจากยานวอยเอจเจอร์ 1 (ตุลาคม 2011 ถึง ตุลาคม 2012)

นาซาได้ลงประกาศในเดือนมิถุนายน ค.ศ. 2012 ว่ายานสำรวจได้ตรวจพบความเปลี่ยนแปลงบริเวณโดยรอบยานที่คาดว่าน่าจะบ่งบอกการมาถึงของเฮลิโอพอส[58] ยาน วอยเอจเจอร์ 1 ได้รายงานว่ามีการเพิ่มขึ้นของอนุภาคมีประจุจากอวกาศชั้นอวกาศระหว่างดาว (interstellar space) ซึ่งปกติจะมีการหักเหเนื่องจากอิทธิพลของลมสุริยะภายในชั้นเฮลิโอสเฟียร์ที่มาจากดวงอาทิตย์ นั่นหมายความว่ายานได้เริ่มโคจรเข้าสู่ชั้นมวลสารระหว่างดาว (interstellar medium) ซึ่งสุดขอบของระบบสุริยะแล้ว[59]

ยาน วอยเอจเจอร์ 1 เป็นยานอวกาศลำแรกที่ได้เดินทางเข้าสู่อวกาศชั้นเฮลิโอพอสในเดือนสิงหา ค.ศ. 2012 ซึ่งเป็นระยะห่างจากดวงอาทิตย์ 121 หน่วยดาราศาสตร์ อย่างไรก็ตามเหตุการณ์นี้เพิ่งจะได้รับการยืนยันในช่วง 1 ปีให้หลังไปแล้ว[60][61][62][63][64]

ในเดือนมิถุนายน ค.ศ. 2019 แสงจากดวงอาทิตย์ต้องใช้เวลาประมาณ 20.11 ชั่วโมงเพื่อเดินทางไปถึงยาน วอยเอจเจอร์ 1 ซึ่งคือระยะห่างจากดวงอาทิตย์ 145 หน่วยดาราศาสตร์ ค่าความส่องสว่างปรากฏเท่ากับ -15.9 หน่วย (น้อยกว่าค่าความสว่างของดวงจันทร์เต็มดวง 30 เท่า)[65] ยานกำลังเคลื่อนที่ด้วยความเร็วสัมพัทธ์กับดวงอาทิตย์ 16.972 กิโลเมตรต่อวินาที (10.434 กิโลไมล์ต่อวินาที) ด้วยความเร็วนี้จะต้องใช้เวลาประมาณ 17,676 ปีเพื่อเดินทางให้ได้ระยะทางเท่ากับ 1 ปีแสง[65]

ช่วงปลายปี ค.ศ. 2012 กลุ่มนักวิจัยพบว่าข้อมูลอนุภาคที่ได้จากยานบ่งชี้ว่ายานได้เดินทางผ่านชั้นเฮลิโอพอสแล้ว ค่าต่างๆ ที่วัดได้แสดงให้เห็นว่ามีการชนกันของอนุภาคพลังงานสูงเพิ่มขึ้นแบบคงที่ (มากกว่า 70 ล้านอิเล็กตรอนโวลต์) ซึ่งเชื่อว่าเป็นรังสีคอสมิกที่ถูกปลดปล่อยออกมาจากการระเบิดซูเปอร์โนวาที่ไกลออกไปจากระบบสุริยะ นอกจากนี้ในปลายเดือนสิงหาคมยังพบว่าการชนกันของอนุภาคพลังงานสูงมีค่าสูงขึ้นอย่างรวดเร็ว แต่ขณะเดียวกันการชนกันของอนุภาคพลังงานต่ำพบว่ามีค่าลดลงเช่นกัน ซึ่งเชื่อว่าอนุภาคพลังงานต่ำเหล่านี้มีต้นกำเนิดมาจากดวงอาทิตย์[66] Ed Roelof นักวิทยาศาสตร์อวกาศจากมหาวิทยาลัยจอนส์ฮอปกินส์และเป็นผู้ติดตามข้อมูลการสำรวจของเครื่องตรวจวัดอนุภาคมีประจุพลังงานต่ำ (LECP) ได้ประกาศว่า "เหล่านักวิทยาศาสตร์ที่ดูแลยาน วอยเอจเจอร์ 1 ต่างพึงพอใจเป็นอย่างมาก"[66] อย่างไรก็ตามหลักเกณฑ์สุดท้ายที่ใช้ยืนยันว่ายาน วอยเอจเจอร์ 1 ได้โคจรผ่านบริเวณที่คาดว่ามีการเปลี่ยนแปลงของสนามแม่เหล็ก (ทั้งจากดวงอาทิตย์และจากอวกาศระหว่างดาว) ไม่ได้ถูกตั้งข้อสังเกต (สนามแม่เหล็กเปลี่ยนทิศเพียง 2 องศา[61]) ซึ่งนั่นอาจทำให้มีการระบุแนวขอบของเฮลิโอพอสมีความผิดพลาดได้

ในวันที่ 3 ธันวาคม ค.ศ. 2012 ดร.เอ็ด สโตน นักวิทยาศาสตร์ของโครงการวอยเอจเจอร์จากสถาบันเทคโนโลยีแคลิฟอร์เนีย (Caltech) กล่าวไว้ว่า "ยาน วอยเอจเจอร์ 1 ได้ค้นพบพื้นที่ใหม่ในเฮลิโอพอสที่เราไม่เคยทราบมาก่อน ตอนนี้ยานยังอยู่ภายใน แต่สนามแม่เหล็กสามารถเชื่อมต่อกับภายนอกได้ มันเป็นเหมือนถนนที่เป็นทางเข้าออกของเหล่าอนุภาค"[67] สนามแม่เหล็กบริเวณนี้สูงมากกว่า 10 เท่าเทียบกับที่ยาน วอยเอจเจอร์ 1 ได้เคยเจอมาก่อนในบริเวณชั้นกำแพงกระแทก คาดว่าบริเวณนี้เป็นแนวกั้นสุดท้ายก่อนที่ยานจะเดินทางออกไปจากระบบสุริยะอย่างสมบูรณ์และเริ่มเข้าสู่อวกาศระหว่างดาว[68][69][70]

เดือนมีนาคม ค.ศ. 2013 มีการประกาศว่ายาน วอยเอจเจอร์ 1 อาจเป็นยานอวกาศลำแรกที่เดินทางเข้าสู่อวกาศระหว่างดาว โดยตรวจพบความเปลี่ยนแปลงของพลาสมาบรืเวณโดยรอบมาตั้งแต่วันที่ 25 สิงหาคม ค.ศ. 2012 อย่างไรก็ตามมีการถกเถียงกันว่าพิ้นที่นี้คืออวกาศระหว่างดาวหรือเป็นพื้นที่ของระบบสุริยะที่ไม่เคยค้นพบกันแน่ มีการถกประเด็นเรื่อยมาจนถึงวันที่ 12 กันยายน ค.ศ. 2013 ซึ่งมีการประกาศยืนยันอย่างเป็นทางการ[71][72]

ในปี ค.ศ. 2013 ยาน วอยเอจเจอร์ 1 กำลังออกจากระบบสุริยะด้วยความเร็วประมาณ 3.6 หน่วยดาราศาสตร์ต่อปี ขณะที่ยาน วอยเอจเจอร์ 2 โคจรด้วยความเร็วที่ช้ากว่าที่ประมาณ 2.96 หน่วยดาราศาสตร์ต่อปี[73] โดยยาน วอยเอจเจอร์ 1 จะนำหน้ายาน วอยเอจเจอร์ 2 มากขึ้นเรื่อยๆ ทุกๆ ปี

ยาน วอยเอจเจอร์ 1 มีระยะห่างจากดวงอาทิตย์ 135 หน่วยดาราศาสตร์ในวันที่ 18 พฤษภาคม ค.ศ. 2016[3] และเพิ่มขึ้นเป็น 139.64 หน่วยดาราศาสตร์ในวันที่ 5 กันยายน ค.ศ. 2017 หรือมากกว่า 19 ชั่วโมงแสง ซึ่งในขณะนั้น ยาน วอยเอจเจอร์ 2 อยู่ห่างจากดวงอาทิตย์ 115.32 หน่วยดาราศาสตร์[3]

สถานะปัจจุบันสามารถติดตามได้จากเว็บไซต์ของนาซา (ดูลิงก์ภายนอก)[3]

 
ยาน วอยเอจเจอร์ 1 และยานสำรวจอื่นๆ ที่เดินทางไปยังอวกาศระหว่างดาว ยกเว้นยาน นิวฮอไรซันส์

มวลสารระหว่างดาวแก้ไข

ยาน วอยเอจเจอร์ 1 มีส่งสัญญาณที่สร้างจากคลื่นพลาสมาที่มาจากอวกาศระหว่างดาว

วันที่ 12 กันยายน ค.ศ. 2013 องค์การนาซาได้ยืนยันอย่างเป็นทางการว่ายาน วอยเอจเจอร์ 1 ได้เดินทางถึงชั้นมวลสารระหว่างดาวแล้วตั้งแต่เดือนสิงหาคม ค.ศ. 2012 หลังจากมีการตรวจสอบ และตกลงว่าเกิดขึ้นในวันที่ 25 สิงหาคม ค.ศ. 2012 (ประมาณ 10 วันก่อนครบรอบ 34 ปีที่ปล่อยยาน) ช่วงเวลาอาจไม่แน่นอนขึ้นอยู่กับว่ามีการตรวจพบความเปลี่ยนแปลงของอนุภาคมีพลังงานครั้งแรกเมื่อใด[62][63][64] ตรงจุดนี้บรรดานักวิทยาศาสตร์อวกาศได้ทิ้งสมมติฐานที่ว่าการเปลี่ยนแปลงทิศทางของสนามแม่เหล็กจะเกิดขึ้นพร้อมกับการข้ามผ่านเฮลิโอพอส[63] แบบจำลองเฮลิโอพอสแบบใหม่ได้ทำนายว่าอาจไม่พบความเปลี่ยนแปลงเหล่านี้มากนัก[74]

กุญแจสำคัญที่ทำให้นักวิทยาศาสตร์หลายคนเชื่อว่ายานเคลื่อนที่ผ่านเฮลิโอพอสไปแล้วก็คือการตรวจพบอิเล็กตรอนที่มีความหนาแน่นเพิ่มขึ้นถึง 80 ทบ อ้างอิงจากการแกว่งของพลาสมาที่เริ่มมาตั้งแต่วันที่ 9 เมษายน ค.ศ. 2013[63] ที่เกิดจากการระเบิดบนดวงอาทิตย์ในเดือนมีนาคม ค.ศ. 2012[60] (คาดว่าความหนาแน่นของอิเล็กตรอนภายนอกเฮลิโอพอสจะมากกว่าภายใน 2 ระดับในแง่ของขนาด)[62] การแกว่งที่น้อยกว่านี้ถูกตรวจพบตั้งแต่เดือนตุลาคมถีงพฤศจิกายน ค.ศ. 2012[72][75] ถูกนำมาใช้ประกอบการศึกษาด้วย

การตรวจวัดพลาสมาต้องอาศัยข้อมูลทางอ้อมจากอุปกรณ์วัดอื่นๆ เนื่องจากเครื่องวัดพลาสมาสเปกโตรมิเตอร์ของยาน วอยเอจเจอร์ 1 ได้หยุดทำงานลงตั้งแต่ปี ค.ศ. 1980[64] ในเดือนกันยายน ค.ศ. 2013 นาซาได้เผยแพร่สัญญาณเสียงที่แปลงมาจากคลื่นพลาสมาที่วัดได้ในอวกาศระหว่างดาว[76]

ในขณะที่ยาน วอยเอจเจอร์ 1 ได้รับกล่าวถึงอย่างกว้างขวางว่ากำลังจะออกจากระบบสุริยะทันทีที่ออกจากชั้นเฮลิโอพอส แต่โดยทางเทคนิคแล้วกลับไม่เป็นเช่นนั้น เพราะระบบสุริยะถูกนิยามว่าเป็นพื้นที่อันกว้างใหญ่ในอวกาศครอบคลุมเหล่าวัตถุที่โคจรรอบดวงอาทิตย์ ปัจจุบันยานยังโคจรได้น้อยกว่า 1 ใน 7 ของจุดปลายระยะทางวงโคจรของดาวเซดนา และยังโคจรไม่ถีงเมฆออร์ต ซึ่งเชื่อว่าเป็นแหล่งต้นกำเนิดของดาวหาง ที่เหล่านักดาราศาสตร์กำหนดว่าเป็นส่วนนอกสุดของระบบสุริยะ[61][72]

อนาคตของยานสำรวจแก้ไข

 
ภาพของยาน วอยเอจเจอร์ 1 จากกล้องโทรทัศน์วิทยุเมื่อวันที่ 21 กุมภาพันธ์ 2013[77]
ภาพจำลองยาน วอยเอจเจอร์ 1 เทียบกับระบบสุริยะ เมื่อวันที่ 2 สิงหาคม 2018
ภาพจำลองยานทั้ง 2 ลำเทียบกับระบบสุริยะและเฮลิโอพอส เมื่อวันที่ 2 สิงหาคม 2018

วอยเอจเจอร์ 1 จะเดินทางถึงเมฆออร์ตในราว 300 ปีข้างหน้า[78][79] และใช้จะเวลาราว 30,000 ปีในการเดินทางข้ามผ่าน[61][72] แม้ว่ายานจะไม่มุ่งหน้าไปยังดาวฤกษ์ใดๆ แต่อีกประมาณ 40,000 ปี ตัวยานจะอยู่ห่างจากดาว Gliese 445 ซึ่งอยู่ในกลุ่มดาวยีราฟราว 1.6 ปีแสง[80] ดาวดวงนี้เคลื่อนที่มายังระบบสุริยะด้วยความเร็วประมาณ 119 กิโลเมตรต่อวินาที[80] นาซากล่าวไว้ว่า วอยเอจเจอร์ทั้งคู่ถูกลิขิตให้เร่ร่อนไปในทางช้างเผือกอาจจะชั่วนิรันดร์" ("The Voyagers are destined—perhaps eternally—to wander the Milky Way.")[81] และภายใน 300,000 ปีข้างหน้ายานจะอยู่ห่างจากดาว TYC 3135-52-1 ซึ่งเป็นดาวฤกษ์ประเภท M3V น้อยกว่า 1 ปีแสง[82]

เชื่อว่ายาน วอยเอจเจอร์ 1 จะท่องไปในห้วงลึกของอวกาศโดยไม่ชนกับวัตถุใดๆ และไม่มีทางที่จะกู้คืนได้อีกแล้ว ในทางกลับกันยานสำรวจ นิวฮอไรซันส์ กลับไม่เป็นเช่นนั้น แม้ความเร็วตอนปล่อยยานจากโลกจะสูงกว่ายานวอยเอจเจอร์ทั้งสองลำ แต่ยานวอยเอจเจอร์ทั้งสองลำกลับได้แรงส่งจากจากบินเฉียดดาวเคราะห์หลายดวง ซึ่งทำให้ความเร็วจากศูนย์กลางดวงอาทิตย์ (heliocentric velocity) เพิ่มขึ้นเรื่อยๆ ขณะที่ยาน นิวฮอไรซันส์ กลับได้แรงส่งจากการบินเฉียดดาวพฤหัสบดีเพียงครั้งเดียวเท่านั้น ในปี ค.ศ. 2019 ยาน นิวฮอไรซันส์ เคลื่อนที่ด้วยความเร็วประมาณ 14 กิโลเมตรต่อวินาที ซึ่งช้ากว่ายาน วอยเอจเจอร์ 1 ไปประมาณ 3 กโลเมตรต่อวินาที และยังเคลื่อนที่ช้าลงเรื่อยๆ อีกด้วย[83]

ในปี ค.ศ. 2017 นาซาประกาศความสำเร็จในการติดเครื่องยนต์ไอพ่นควบคุมแนวโคจร (trajectory correction maneuver: TCM) ทั้งหมด 4 ตัวที่ติดตั้งบนยาน วอยเอจเจอร์ 1 ภายหลังมีการติดเครื่องยนต์ชุดนี้ครั้งแรกไปตั้งแต่ปี ค.ศ. 1980 เครื่องยนต์ชุดนี้สามารถใช้แทนเครื่องยนต์ที่ใช้ในการควบคุมตำแหน่งของจานสายอากาศที่เสื่อมสภาพไปนานแล้ว ซึ่งนั่นทำให้นาซายังสามารถรับส่งข้อมูลกับยาน วอยเอจเจอร์ 1 ต่อไปได้อีก 2 ถึง 3 ปี[84][85]

มีการปิดการทำงานของอุปกรณ์ต่างๆ ที่ติดตั้งบนยานเพื่อสงวนพลังงานไว้สำหรับอุปกรณ์ที่สำคัญอื่นๆ โดยเริ่มจากอุปกรณ์วัดทางวิทยาศาสตร์ที่ไม่จำเป็นหรือได้รับข้อมูลมากเพียงพอแล้ว ขณะนี้อุปกรณ์ที่ยังเปิดใช้งานอยู่จะใช้สำหรับการศึกษาคุณสมบัติของอวกาศระหว่างดาว รวมถึงอวกาศภายนอกระบบสุริยะ ซึ่งได้แก่ รังสีคอสมิก อนุภาคมีประจุพลังงานต่ำ สนามแม่เหล็ก และคลื่นพลาสมา[86]

ในอนาคตนาซามีแผนที่จะปิดการทำงานของเทปบันทึกดิจิตอล (DTR) ที่ใช้ในการสำรองข้อมูลในยานเมื่อรอส่งกลับมายังโลก เพื่อโอนถ่ายพลังงานไว้สำหรับระบบป้องกันเชื้อเพลิงไฮดราซีนจากการเยือกแข็ง นอกจากนี้จะหยุดการใช้งานไจโรสโคปในการปฏิบัติภารกิจทั่วไป โดยมีการเขียนโปรแกรมให้ทำงานในกรณีที่มีข้อบกพร่องร้ายแรงเท่านั้น

ภายหลังปี ค.ศ. 2020 อุปกรณ์วัดทางวิทยาศาสตร์ทั้งหมดที่ติดตั้งบนยาน วอยเอจเจอร์ 1 เริ่มถูกปิดการทำงานทันที หรือมีการปิดการทำงานบางส่วน แล้วใช้พลังงานไฟฟ้าร่วมกันเท่าที่พลังงานไฟฟ้าที่หลงเหลืออยู่ ท้ายสุดยานจะยังคงสื่อสารกับโลกไปจนกว่าจะถึงปี ค.ศ. 2025 ที่คาดว่าจะไม่มีพลังงานไฟฟ้าหลงเหลือสำหรับยาน สุดท้ายยานจะขาดการติดต่อกับโลกไปตลอดกาลและโคจรไปในห้วงอวกาศโดยไร้การควบคุมใดๆ[20][86]

แผ่นจานทองคำแก้ไข

 
แผ่นจานทองคำของยาน วอยเอจเจอร์
คำทักทายเป็นภาษาไทยในแผ่นจากทองคำ นาทีที่ 00:00:25 โดยคุณรุจิรา เมนดิโอเนส

ยานวอยเอจเจอร์แต่ละลำบรรทุกแผ่นเสียงที่เรียกว่าแผ่นจานทองคำ (Golden record) ซึ่งบันทึกเสียงและภาพของเหตุการณ์ต่างๆ บนโลก ในกรณีที่ยานทั้งสองได้มีโอกาสพบกับสิ่งมีชีวิตทรงภูมิปัญญาอื่นในระบบดาวเคราะห์แห่งอื่น[87] เนื้อหาในแผ่นจานประกอบด้วยภาพของโลก สิ่งมีชีวิตบนโลก ข้อมูลทางวิทยาศาสตร์หลากหลายสาขา คำพูดทักทายจากผู้คนเป็นภาษาต่างๆ มากถึง 55 ภาษา (เช่น จากเลขาธิการสหประชาชาติ ประธานาธิบดีสหรัฐอเมริกา และเด็ก ๆ บนโลก รวมถึงภาษาไทย โดยภาษาไทยมีการบันทึกไว้ว่า "สวัสดีค่ะ สหายในธรณีโพ้น พวกเราในธรณีนี้ขอส่งมิตรจิตมา­ถึงท่านทุกคน") รวมถึงชุดเมดเล่ย์ "เสียงจากโลก" ที่ประกอบด้วยเสียงของวาฬ เสียงเด็กร้อง เสียงคลื่นกระทบฝั่ง และบทเพลงของศิลปินชื่อดังมากมาย[88]

ดูเพิ่มแก้ไข

 
ตำแหน่งตามระบบพิกัดทรงกลมของยานสำรวจอวกาศทั้ง 5 ลำจากศูนย์กลางดวงอาทิตย์ในอวกาศระหว่างดวงดาว (สี่เหลี่ยม) และวัตถุอื่นๆ (วงกลม) จนถึงปี 2020 ระบุวันปล่อยยานและวันที่ทำการบินเฉียด จุดที่ระบุในภาพคือตำแหน่งทุกวันที่ 1 มกราคมของทุกปี และจะกำกับทุก 5 ปี

อ้างอิงแก้ไข

  1. "Voyager 1". NSSDC Master Catalog. NASA/NSSDC. Archived from the original on December 14, 2013. สืบค้นเมื่อ August 21, 2013.
  2. "Voyager 1". N2YO. สืบค้นเมื่อ August 21, 2013.
  3. 3.0 3.1 3.2 3.3 3.4 "Voyager - Mission Status". Jet Propulsion Laboratory. National Aeronautics and Space Administration. สืบค้นเมื่อ February 16, 2019.
  4. "Voyager 1". BBC Solar System. Archived from the original on February 3, 2018. สืบค้นเมื่อ September 4, 2018.
  5. 5.0 5.1 5.2 5.3 "Voyager – Frequently Asked Questions". NASA. February 14, 1990. สืบค้นเมื่อ August 4, 2017.
  6. "New Horizons conducts flyby of Pluto in historic Kuiper Belt encounter". สืบค้นเมื่อ September 2, 2015.
  7. 7.0 7.1 "What If Voyager Had Explored Pluto?". สืบค้นเมื่อ September 2, 2015.
  8. Barnes, Brooks (September 12, 2013). "In a Breathtaking First, NASA Craft Exits the Solar System". New York Times. สืบค้นเมื่อ September 12, 2013.
  9. Wall, Mike (December 1, 2017). "Voyager 1 Just Fired Up its Backup Thrusters for the 1st Time in 37 Years". Space.com. สืบค้นเมื่อ December 3, 2017.
  10. "1960s". JPL. Archived from the original on December 8, 2012. สืบค้นเมื่อ August 18, 2013.
  11. "The Pioneer missions". NASA. 2007. สืบค้นเมื่อ August 19, 2013.
  12. Mack, Pamela (1998). "Chapter 11". From engineering science to big science: The NACA and NASA Collier Trophy research project winners. History Office. p. 251. ISBN 978-0-16-049640-0.
  13. Landau, Elizabeth (October 2, 2013). "Voyager 1 becomes first human-made object to leave solar system". CNN. CNN. สืบค้นเมื่อ May 29, 2014.
  14. "NASA Spacecraft Embarks on Historic Journey into Interstellar Space". NASA. September 12, 2013. สืบค้นเมื่อ May 29, 2014. NASA's Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space.
  15. "Viking: Trailblazer for All Mars Research". NASA. June 22, 2006. สืบค้นเมื่อ May 29, 2014. All of these missions relied on Viking technologies. As it did for the Viking program team in 1976, Mars continues to hold a special fascination. Thanks to the dedication of men and women working at NASA centers across the country, the mysterious Mars of our past is becoming a much more familiar place.
  16. 16.0 16.1 "VOYAGER 1:Host Information". JPL. 1989. สืบค้นเมื่อ April 29, 2015.
  17. "High Gain Antenna". JPL. สืบค้นเมื่อ August 18, 2013.
  18. Ludwig, Roger; Taylor, Jim (March 2002). "Voyager Telecommunications" (PDF). DESCANSO Design and Performance Summary Series. NASA/JPL. สืบค้นเมื่อ September 16, 2013.
  19. "NASA News Press Kit 77–136". JPL/NASA. สืบค้นเมื่อ December 15, 2014.
  20. 20.0 20.1 20.2 Furlong, Richard R.; Wahlquist, Earl J. (1999). "U.S. space missions using radioisotope power systems" (PDF). Nuclear News. 42 (4): 26–34.
  21. "Spacecraft Lifetime". JPL. สืบค้นเมื่อ August 19, 2013.
  22. "pds-rings". สืบค้นเมื่อ May 23, 2015.
  23. Tomayko, James (April 1987). "Computers in Spaceflight: The NASA Experience". NASA. สืบค้นเมื่อ February 6, 2010.
  24. "au.af". สืบค้นเมื่อ May 23, 2015.
  25. "airandspace". สืบค้นเมื่อ May 23, 2015.
  26. "Voyager 1 Narrow Angle Camera Description". NASA. สืบค้นเมื่อ January 17, 2011.
  27. "Voyager 1 Wide Angle Camera Description". NASA. สืบค้นเมื่อ January 17, 2011.
  28. Greicius, Tony (2017-12-01). "Voyager 1 Fires Up Thrusters After 37 Years". NASA (in อังกฤษ). สืบค้นเมื่อ 2017-12-13.
  29. 29.0 29.1 29.2 "Encounter with Jupiter". NASA. สืบค้นเมื่อ August 18, 2013.
  30. 30.0 30.1 "Planetary voyage". NASA. สืบค้นเมื่อ August 18, 2013.
  31. 31.0 31.1 "Encounter with saturn". NASA. สืบค้นเมื่อ August 29, 2013.
  32. 32.0 32.1 32.2 Jim Bell (February 24, 2015). The Interstellar Age: Inside the Forty-Year Voyager Mission. Penguin Publishing Group. p. 93. ISBN 978-0-698-18615-6.
  33. David W. Swift (January 1, 1997). Voyager Tales: Personal Views of the Grand Tour. AIAA. p. 69. ISBN 978-1-56347-252-7.
  34. "Photo Caption". Public Information Office. สืบค้นเมื่อ August 26, 2010.
  35. "Voyager 1 now most distant man-made object in space". CNN. February 17, 1998. Archived from the original on July 1, 2012. สืบค้นเมื่อ July 1, 2012.
  36. Clark, Stuart (September 13, 2013). "Voyager 1 leaving solar system matches feats of great human explorers". The Guardian.
  37. Webb, Stephen (October 4, 2002). If the Universe is Teeming with Aliens … WHERE IS EVERYBODY?: Fifty Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life. ISBN 978-0-387-95501-8.
  38. Darling, David. "Fastest Spacecraft". สืบค้นเมื่อ August 19, 2013.
  39. "Voyager 1 in heliopause". JPL. สืบค้นเมื่อ August 18, 2013.
  40. "Voyager Mission Operations Status Report # 2013-09-06, Week Ending September 6, 2013". JPL. สืบค้นเมื่อ September 15, 2013.
  41. Wall, Mike (September 12, 2013). "It's Official! Voyager 1 Spacecraft Has Left Solar System". Space.com. สืบค้นเมื่อ May 30, 2014.
  42. Tobin, Kate (November 5, 2003). "Spacecraft reaches edge of Solar System". CNN. สืบค้นเมื่อ August 19, 2013.
  43. Fisk, Len A. (2003). "Planetary Science: Over the edge?" (PDF). Nature. 426 (6962): 21–2. Bibcode:2003Natur.426...21F. doi:10.1038/426021a. PMID 14603294.
  44. Krimigis, S. M.; Decker, R. B.; Hill, M. E.; Armstrong, T. P.; Gloeckler, G.; Hamilton, D. C.; Lanzerotti, L. J.; Roelof, E. C. (2003). "Voyager 1 exited the solar wind at a distance of ∼85 au from the Sun". Nature. 426 (6962): 45–8. Bibcode:2003Natur.426...45K. doi:10.1038/nature02068. PMID 14603311.
  45. McDonald, Frank B.; Stone, Edward C.; Cummings, Alan C.; Heikkila, Bryant; Lal, Nand; Webber, William R. (2003). "Enhancements of energetic particles near the heliospheric termination shock". Nature. 426 (6962): 48–51. Bibcode:2003Natur.426...48M. doi:10.1038/nature02066. PMID 14603312.
  46. Burlaga, L. F. (2003). "Search for the heliosheath with Voyager 1 magnetic field measurements" (PDF). Geophysical Research Letters. 30 (20): n/a. Bibcode:2003GeoRL..30.2072B. doi:10.1029/2003GL018291.
  47. "Voyager crosses termination shock". สืบค้นเมื่อ August 29, 2013.
  48. "Voyager crosses termination shock". สืบค้นเมื่อ August 29, 2013.
  49. "Voyager Timeline". NASA/JPL. February 2013. สืบค้นเมื่อ December 2, 2013.
  50. 50.0 50.1 "ARRL article" (in German). AMSAT-DL. Archived from the original on October 14, 2006. "ARRL article".
  51. "Voyager 1 Sees Solar Wind Decline". NASA. December 13, 2010. Archived from the original on August 22, 2011. สืบค้นเมื่อ September 16, 2013.
  52. Krimigis, S. M.; Roelof, E. C.; Decker, R. B.; Hill, M. E. (2011). "Zero outward flow velocity for plasma in a heliosheath transition layer". Nature. 474 (7351): 359–361. Bibcode:2011Natur.474..359K. doi:10.1038/nature10115. PMID 21677754.
  53. Amos, Jonathan (December 14, 2010). "Voyager near Solar System's edge". BBC News. สืบค้นเมื่อ December 21, 2010.
  54. NASA. "Voyager – The Interstellar Mission". NASA. สืบค้นเมื่อ September 16, 2013.
  55. "Voyager: Still dancing 17 billion km from Earth". BBC News. March 9, 2011.
  56. "Voyager Probes Detect "invisible" Milky Way Glow". National Geographic. December 1, 2011. สืบค้นเมื่อ December 4, 2011.
  57. "Spacecraft enters 'cosmic purgatory'". CNN. December 6, 2011. สืบค้นเมื่อ December 7, 2011.
  58. "NASA Voyager 1 Spacecraft Nears Interstellar Space". Space.com. สืบค้นเมื่อ August 19, 2013.
  59. "Data From NASA's Voyager 1 Point to Interstellar Future". NASA. June 14, 2012. สืบค้นเมื่อ June 16, 2012.
  60. 60.0 60.1 Cook, J.-R. C.; Agle, D.C.; Brown, D. (September 12, 2013). "NASA Spacecraft Embarks on Historic Journey into Interstellar Space". NASA. สืบค้นเมื่อ September 14, 2013.
  61. 61.0 61.1 61.2 61.3 Ghose, Tia (September 13, 2013). "Voyager 1 Really Is in Interstellar Space: How NASA Knows". Space.com. TechMedia Network. สืบค้นเมื่อ September 14, 2013.
  62. 62.0 62.1 62.2 Cowen, R. (2013). "Voyager 1 has reached interstellar space". Nature. doi:10.1038/nature.2013.13735.
  63. 63.0 63.1 63.2 63.3 Kerr, R. A. (2013). "It's Official—Voyager Has Left the Solar System". Science. 341 (6151): 1158–1159. doi:10.1126/science.341.6151.1158. PMID 24030991.
  64. 64.0 64.1 64.2 Gurnett, D. A.; Kurth, W. S.; Burlaga, L. F.; Ness, N. F. (2013). "In Situ Observations of Interstellar Plasma with Voyager 1". Science. 341 (6153): 1489–1492. Bibcode:2013Sci...341.1489G. doi:10.1126/science.1241681. PMID 24030496.
  65. 65.0 65.1 Thongoon, Kiattisak (June 7, 2019). "Spacecraft escaping the Solar System". Heavens-Above. สืบค้นเมื่อ June 7, 2019.
  66. 66.0 66.1 Wolchover, Natalie. "Did NASA's Voyager 1 Spacecraft Just Exit the Solar System?". livescience. สืบค้นเมื่อ August 20, 2013.
  67. Matson, John (December 4, 2012). "Despite Tantalizing Hints, Voyager 1 Has Not Crossed into the Interstellar Medium". Scientific American. สืบค้นเมื่อ August 20, 2013.
  68. "Voyager 1 Can 'Taste' the Interstellar Shore". Discovery News. Discovery Channel. December 3, 2012. สืบค้นเมื่อ September 16, 2013.
  69. Oakes, Kelly (December 3, 2012). "Voyager 1 is still not out of the Solar System". Basic Space Blog. Scientific American. สืบค้นเมื่อ September 16, 2013.
  70. "Voyager 1 probe leaving Solar System reaches 'magnetic highway' exit". Daily News & Analysis. Reuters. December 4, 2012. สืบค้นเมื่อ December 4, 2012.
  71. "Voyager 1 has entered a new region of space, sudden changes in cosmic rays indicate". American Geophysical Union. March 20, 2013. Archived from the original on March 22, 2013.
  72. 72.0 72.1 72.2 72.3 Cook, J.-R (September 12, 2013). "How Do We Know When Voyager Reaches Interstellar Space?". NASA / Jet Propulsion Lab. สืบค้นเมื่อ September 15, 2013.
  73. "Voyager - Fast Facts". voyager.jpl.nasa.gov.
  74. Swisdak, M.; Drake, J. F.; Opher, M. (2013). "A Porous, Layered Heliopause". The Astrophysical Journal. 774 (1): L8. arXiv:1307.0850. Bibcode:2013ApJ...774L...8S. doi:10.1088/2041-8205/774/1/L8.
  75. Morin, Monte (September 12, 2013). "NASA confirms Voyager 1 has left the Solar System". Los Angeles Times.
  76. "Voyage 1 Records "Sounds" of Interstellar Space". Space.com. สืบค้นเมื่อ December 20, 2013.
  77. "Voyager Signal Spotted By Earth Radio Telescopes". NASA. NASA TV. September 5, 2013. สืบค้นเมื่อ 2015-05-20.
  78. "Catalog Page for PIA17046". Photo Journal. NASA. สืบค้นเมื่อ April 27, 2014.
  79. "It's Official: Voyager 1 Is Now In Interstellar Space". UniverseToday. 2013-09-12. สืบค้นเมื่อ April 27, 2014.
  80. 80.0 80.1 "Voyager – Mission – Interstellar Mission". NASA. August 9, 2010. สืบค้นเมื่อ March 17, 2011.
  81. "Future". NASA. สืบค้นเมื่อ October 13, 2013.
  82. Bailer-Jones, Coryn A. L.; Farnocchia, Davide (3 April 2019). "Future stellar flybys of the Voyager and Pioneer spacecraft". Research Notes of the AAS. RNAAS 3, 59. 3 (4): 59. Bibcode:2019RNAAS...3d..59B. doi:10.3847/2515-5172/ab158e.
  83. "New Horizons Salutes Voyager". New Horizons. August 17, 2006. Archived from the original on March 9, 2011. สืบค้นเมื่อ November 3, 2009.
  84. "Voyager 1 spacecraft thrusters fire up after decades idle". The Irish Times. December 4, 2017.
  85. "Voyager 1 Fires Up Thrusters After 37 Years". NASA. December 1, 2017.
  86. 86.0 86.1 "Voyager - Mission Status". voyager.jpl.nasa.gov.
  87. Ferris, Timothy (May 2012). "Timothy Ferris on Voyagers' Never-Ending Journey". Smithsonian Magazine. สืบค้นเมื่อ August 19, 2013.
  88. "Voyager Golden record". JPL. สืบค้นเมื่อ August 18, 2013.

แหล่งข้อมูลอื่นแก้ไข