ผลต่างระหว่างรุ่นของ "รังสีแม่เหล็กไฟฟ้า"

เพิ่มขึ้น 6,458 ไบต์ ,  6 เดือนที่ผ่านมา
ไม่มีคำอธิบายอย่างย่อ
ไม่มีความย่อการแก้ไข
ป้ายระบุ: การแก้ไขแบบเห็นภาพ แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่
ไม่มีความย่อการแก้ไข
ป้ายระบุ: การแก้ไขแบบเห็นภาพ เพิ่มข้อความไม่เป็นวิกิขนาดใหญ่
 
ในวิชา[[ฟิสิกส์]] '''รังสีแม่เหล็กไฟฟ้า''' ({{lang-en|electromagnetic radiation}}) หมายถึงคลื่น (หรือควอนตัม[[โฟตอน]]) ของ[[สนามแม่เหล็กไฟฟ้า]]ที่แผ่ผ่านปริภูมิโดยพา[[พลังงานจากการแผ่รังสี]]แม่เหล็กไฟฟ้า
 
โดยคลาสสิก รังสีแม่เหล็กไฟฟ้า ประกอบด้วย คลื่นแม่เหล็กไฟฟ้า ซึ่งเป็นการสั่นประสานของสนามไฟฟ้าและแม่เหล็กซึ่งแผ่ผ่านสุญญากาศด้วยความเร็วแสง การสั่นของสนามทั้งสองนี้ตั้งฉากกันและตั้งฉากกับทิศทางของการแผ่พลังงานและคลื่น ทำให้เกิดคลื่นตามขวาง แนวคลื่นของคลื่นแม่เหล็กไฟฟ้าเปล่งจากแหล่งกำเนิดจุด (เช่น หลอดไฟ) เป็นทรงกลม ตำแหน่งของคลื่นแม่เหล็กไฟฟ้าในสเปกตรัมแม่เหล็กไฟฟ้าสามารถจำแนกลักษณะได้โดยความถี่ของการสั่นหรือความยาวคลื่น สเปกตรัมแม่เหล็กไฟฟ้ามีคลื่นวิทยุ ไมโครเวฟ รังสีอินฟราเรด แสงที่มองเห็นได้ รังสีอัลตราไวโอเลต รังสีเอกซ์และรังสีแกมมา โดยเรียงความถี่จากน้อยไปมากและความยาวคลื่นจากมากไปน้อย
โดยคลาสสิก รังสีแม่เหล็กไฟฟ้าประกอบด้วย'''คลื่น'''[[โมเมนตัมเชิงมุม|ตัมเชิงมุม]]จากอนุภาคแหล่งกำเนิดและสามารถส่งผ่านคุณสมบัติเหล่านี้แก่สสารซึ่งไปทำอันตรกิริยาด้วย [[ควอนตัม]]ของคลื่นแม่เหล็กไฟฟ้าเรียก [[โฟตอน]] ซึ่งมี[[มวลนิ่ง]]เป็นศูนย์ แต่พลังงานหรือมวลรวม (โดยสัมพัทธ์) [[ความสมมูลมวล–พลังงาน|สมมูล]]ไม่เป็นศูนย์ ฉะนั้นจึงยังได้รับผลจาก[[ความโน้มถ่วง]] รังสีแม่เหล็กไฟฟ้าสัมพันธ์กับคลื่นแม่เหล็กไฟฟ้าเหล่านั้นซึ่งสา
 
คลื่นแม่เหล็กไฟฟ้า เกิดเมื่อ อนุภาคมีประจุถูกเร่ง แล้วคลื่นเหล่านี้จะสามารถมีอันตรกิริยากับอนุภาคมีประจุอื่น คลื่นแม่เหล็กไฟฟ้าพาพลังงาน โมเมนตัมและโมเมนตัมเชิงมุมจากอนุภาคแหล่งกำเนิดและสามารถส่งผ่านคุณสมบัติเหล่านี้แก่สสารซึ่งไปทำอันตรกิริยาด้วย ควอนตัมของคลื่นแม่เหล็กไฟฟ้าเรียก โฟตอน ซึ่งมีมวลนิ่งเป็นศูนย์ แต่พลังงานหรือมวลรวม (โดยสัมพัทธ์) สมมูลไม่เป็นศูนย์ ฉะนั้นจึงยังได้รับผลจากความโน้มถ่วง รังสีแม่เหล็กไฟฟ้าสัมพันธ์กับคลื่นแม่เหล็กไฟฟ้าเหล่านั้นซึ่งสามารถแผ่ตนเองได้โดยปราศจากอิทธิพลต่อเนื่องของประจุเคลื่อนที่ที่ผลิตมัน เพราะรังสีนั้นมีระยะห่างเพียงพอจากประจุเหล่านั้นแล้ว ฉะนั้น บางทีจึงเรียกรังสีแม่เหล็กไฟฟ้าว่าสนามไกล ในภาษานี้สนามใกล้หมายถึงสนามแม่เหล็กไฟฟ้าใกล้ประจุและกระแสที่ผลิตมันโดยตรง โดยเจาะจงคือ ปรากฏการณ์การเหนี่ยวนำแม่เหล็กไฟฟ้าและการเหนี่ยวนำไฟฟ้าสถิต
 
ในทฤษฎีควอนตัมแม่เหล็กไฟฟ้า รังสีแม่เหล็กไฟฟ้าประกอบด้วยโฟตอน อนุภาคมูลฐานซึ่งทำให้เกิดอันตรกิริยาแม่เหล็กไฟฟ้าทั้งสิ้น ฤทธิ์ควอนตัมทำให้เกิดแหล่งรังสีแม่เหล็กไฟฟ้าเพิ่ม เช่น การส่งผ่านอิเล็กตรอนไประดับพลังงานต่ำกว่าในอะตอมและการแผ่รังสีวัตถุดำ โฟตอนความถี่สูงขึ้นจะมีพลังงานมากขึ้น ความสัมพันธ์นี้เป็นไปตามสมการของพลังค์ E = hν โดยที่ E คือ พลังงานต่อโปรตอน ν คือ ความถี่ของโฟตอน และ h คือ ค่าคงที่ของพลังค์ ตัวอย่างเช่น โฟตอนรังสีแกมมาหนึ่งโฟตอน อาจพาพลังงาน ~100,000 เท่าของโฟตอนหนึ่งโฟตอนของแสงที่มองเห็นได้
 
ผลของรังสีแม่เหล็กไฟฟ้า ต่อสารประกอบเคมีและสิ่งมีชีวิตขึ้นอยู่กับพลังงานและความถี่ของรังสี รังสีแม่เหล็กไฟฟ้าที่มองเห็นได้หรือความถี่ต่ำ (คือ แสงที่มองเห็นได้ อินฟราเรด ไมโครเวฟและคลื่นวิทยุ) เรียก รังสีไม่แตกตัวเป็นไอออน (non-ionizing radiation) เพราะโฟตอนของมันเดี่ยว ๆ ไม่มีพลังงานเพียงพอทำให้อะตอมหรือโมเลกุลกลายเป็นไอออน ผลของรังสีเหล่านี้ต่อระบบเคมีและเนื้อเยื่อมีชีวิตส่วนใหญ่เกิดจากฤทธิ์ความร้อนจากการส่งผ่านพลังงานรวมของหลายโฟตอน ในทางตรงข้าม รังสีอัลตราไวโอเลต เอกซ์และแกมมาเรียก รังสีแตกตัวเป็นไอออน (ionizing radiation) เพราะแต่ละอะตอมความถี่สูงนั้นพาพลังงานเพียงพอทำให้โมเลกุลแตกตัวเป็นไอออนหรือสลายพันธะเคมี รังสีเหล่านี้มีความสามารถทำให้เกิดปฏิกิริยาเคมีและความเสียหายต่อเซลล์มีชีวิตนอกเหนือจากผลของความร้อนธรรมดาและอาจเป็นภัยถึงชีวิตได้
 
== อ้างอิง ==
ผู้ใช้นิรนาม