ผลต่างระหว่างรุ่นของ "ไฟฟ้ากระแสสลับ"

เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
Patsagorn Y. (คุย | ส่วนร่วม)
ป้ายระบุ: แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่ แก้ไขขั้นสูงด้วยอุปกรณ์เคลื่อนที่
Patsagorn Y. (คุย | ส่วนร่วม)
ป้ายระบุ: แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่ แก้ไขขั้นสูงด้วยอุปกรณ์เคลื่อนที่
บรรทัด 1:
{{ลิงก์ไปภาษาอื่น}}
[[ไฟล์:Types of current.svg|thumb|140px|ภาพแสดงความแตกต่างระหว่างไฟฟ้ากระแสตรงและไฟฟ้ากระแสสลับ กระแสตรงอาจเป็นบวกหรือลบก็ได้อย่างใดอย่างหนึ่ง ไม่ไปก็กลับ แต่กระแสสลับ วิ่งไปวิ่งกลับตลอดเวลา จำนวนรอบของไทยคือ 50 รอบต่อวินาที หรือ 50 Hz]]
'''ไฟฟ้ากระแสสลับ''' ({{lang-en|alternating current electricity: AC หรือ ac}}) หมายถึงกระแสที่มีทิศทางไปและกลับตลอดระยะเวลา มีการสลับขั้วบวกและลบกันอยู่ตลอดเวลา ไม่เหมือนกระแสตรง (direct current, DC หรือ dc) ที่[[ไฟฟ้า]]จะไหลไปในทิศทางเดียวและไม่ไหลกลับ เช่น ไฟฟ้าที่ได้จากถ่านไฟฉาย แบตเตอรี่ของรถยนต์ เป็นต้น
 
ไฟฟ้ากระแสสลับจึงเป็นไฟฟ้าที่เหมาะสำหรับบ้านเรือนหรือธุรกิจอุตสาหกรรมที่ใช้ไฟฟ้าปริมาณมาก ๆ รูปคลื่นเป็น sine wave ในบางกรณี รูปคลื่นอาจเป็นสามเหลี่ยมหรือสี่เหลี่ยม
[[ไฟล์:2-level-animation.gif|thumb|140px|ภาพจำลองการส่งคลื่น AC จาก generator แหล่งพลังงานซึ่งส่งพลังงานกลับทิศทางตลอดเวลา]]
 
==ประวัติ==
[[ไฟล์:Guillaume Duchenne de Boulogne performing facial electrostimulus experiments.jpg|thumb|140px|การทดลองกระตุ้นด้วยไฟฟ้าที่หน้าโดย Duchenne]]
เครื่องกำเนิดไฟฟ้ากระแสสลับเครื่องแรกเป็นครั้งแรกมีพื้นฐานมาจากหลักการของไมเคิล ฟาราเดย์สร้างขึ้นโดยช่างชาวฝรั่งเศสชื่อ Hippolyte Pixii ในปี ค.ศ.1832 หลังจากนั้น Pixii เพิ่มตัวสลับสายเข้าไปในอุปกรณ์ของเขา ซึ่งในขณะนั้นยังใช้ไฟ dc กันอย่างแพร่หลายอยู่ กระแสสลับที่เก่าแก่ที่สุดที่มีการถูกบันทึกไว้ว่าประยุก[[ไมเคิล ฟาราเดย์|ต์]]ประยุกต์ใช้จริงโดย [[:en:Duchenne_de_Boulogne#Duchenne's_influence|Duchenne de Boulogne]] นักประดิษฐ์และพัฒนาไฟฟ้าบำบัด ในปี [[ค.ศ.1855]] เขาประกาศว่า AC ใช้รักษาการหดตัวของกล้ามเนื้อได้ดีกว่า DC
 
<ref>http://www.rmutphysics.com/physics/oldfront/58/inductor-faraday2.htm</ref>[[ไมเคิล ฟาราเดย์]] เกิดเมื่อวันที่ 22 กันยายน ในปี [[ค.ศ.1791]] เป็นบุตรของช่างเหล็กชาวอังกฤษ เนื่องจากฐานะไม่สู้ดี เขาจึงได้รับการศึกษาน้อยยังไม่ทันเรียนสำเร็จก็ต้องออกจากโรงเรียนกลางคัน และใช้ชีวิตอยู่ในสลัมแห่งหนึ่งไม่มีแววว่าจะเติบโตขึ้นเป็นนักวิทยาศาสตร์ที่มีชื่อเสียงไปได้ <ref name=":1">http://www.rmutphysics.com/physics/oldfront/58/inductor-faraday2.htm</ref>เมื่อมีอายุ 13 ปี ไมเคิลก็ได้ไปทำงานเป็นเด็กส่งหนังสือพิมพ์ และทำงานเย็บปกหนังสือในร้านขายหนังสือ จากการทำงานนี้ทำให้เขามีใจรักหนังสือและหาโอกาสอ่านหนังสืออยู่เสมอ โดยเฉพาะหนังสือที่เกี่ยวกับวิชาไฟฟ้าที่ไมเคิลได้สนใจมากที่สุด ซึ่งก็ได้ทำการทดลองดูด้วยตัวของเขาเอง และหาโอกาสไปฟังการบรรยายของเชอร์ฮัมฟรีย์ เดวี ซึ่งเขาจะไปฟังทุกครั้ง และได้ส่งจดหมายแสดงความประสงค์ที่จะขอไปเป็นเด็กรับใช้ของเชอร์ฮัมฟรีย์อีกด้วย<ref>http name=":1"//www.rmutphysics.com/physics/oldfront/58/inductor-faraday2.htm</ref> เชอร์ฮัมฟรีย์ เดวีย์ เห็นชายหนุ่มมีความสนใจอย่างแรงกล้า จึงรับเข้าทำงานเป็นคนล้างเครื่องมือวิทยาศาสตร์ในห้องเครื่องมือ ทำให้เขามีโอกาสศึกษาวิชาทางวิทยาศาสตร์จากเชอร์ฮัมฟรีย์ เดวีย์ จนเกิดความชำนาญ จนได้รับหน้าที่เป็นผู้ช่วยและผู้ติดตามท่านเชอร์ไปในการเดินทางไปบรรยายทุกครั้ง
ในปี [[ค.ศ.1876]] วิศวกรชาวรัสเซียชื่อ Pavel Yablochkov คิดค้นระบบไฟส่องสว่างขึ้นโดยมีรากฐานจากชุดของขดลวดเหนี่ยวนำโดยที่ขดลวดปฐมภูมิเชื่อมต่อกับแหล่งไฟ AC ลวดทุติยภูมิสามารถเชื่อมต่อไปยังเทียนไฟฟ้า (โคมประกายไฟ) ได้หลายดวง ขดลวด Yablochkov ทำหน้าที่เป็นหม้อแปลงไฟฟ้านั่นเอง
[[ไฟล์:Hippodrome shined with Yablochkov candles.jpg|thumb|140px|Hippodrome กรุงปารีส ให้แสงสว่างโดยใช้เทียนของ Yablochkov 128 ดวง โดยใช้เครื่องกำเนิดไฟฟ้าและหม้อแปลงไฟฟ้า]]
บรรทัด 18:
[[ไฟล์:Westinghouse row of dynamos 1893.gif|thumb|140px|ภาพแสดง AC ไดนาโมของ Westinghouse ที่ให้แสงสว่างสำหรับงาน world expo ที่ชิคาโก ในปี 1893]]
 
== สายส่ง, การจำหน่าย ==
[[ไฟล์:Ligne haute-tension.jpg|thumb|140px|ตัวอย่างสายส่งไฟฟ้าแรงสูง ประเทศไทยใช้สุงสุดที่ 225kV จากแม่เมาะ-กท.<ref>[http://www.ee.kmutt.ac.th/download/Introduction/powersys%20+%20HV.pdf‎], ระบบไฟฟ้ากำลังและไฟฟ้าแรงสูง ม.พระจอมเกล้าธนบุรี</ref>]]
แรงดันไฟฟ้า AC อาจจะเพิ่มขึ้นหรือลดลงด้วยหม้อแปลงไฟฟ้​​า การใช้แรงดันไฟฟ้าที่สูงจะมีประสิทธิภาพในการส่งพลังงานมากอย่างมีนัยสำคัญ การสูญเสียพลังงานในตัวนำเป็นผลคูณของกระแสยกกำลังสองกับค่าความต้านทานของตัวนำ ตามสูตร
 
:{{Center|<math> P_{\rm L} = I^2 R \, .</math>}}
 
ซึ่งหมายความว่าเมื่อส่งไฟฟ้​​าด้วยพลังงานคงที่บนลวดใด ๆ ถ้ากระแสลดลงสองเท่า, การสูญเสียพลังงานจะลดลงสี่เท่า
บรรทัด 35:
ระบบไฟฟ้าสามเฟสเป็นเรื่องธรรมดามาก วิธีที่ง่ายที่สุดคือการแยกขดลวดสเตเตอร์ในเครื่องกำเนิดไฟฟ้าออกเป็น 3 ชุด แต่ละชุดทำมุม 120°ซึ่งกันและกัน รูปคลื่นของกระแสจะถูกสร้างขึ้นโดยมีขนาดเท่ากันแต่เฟสต่างกัน 120° ถ้าเพิ่มขดลวดตรงข้ามกับชุดเหล่านี้ (ระยะห่าง 60 °) พวกมันจะสร้างเฟสเดียวกันแต่กระแสไฟฟ้าตรงข้ามกันและสามารถต่อสายเข้าด้วยกันได้
[[ไฟล์:3phase AC wave.gif|thumb|140px|ภาพแสดงรูปคลื่น 3 เฟส]]
ในทางปฏิบัติ จะใช้ "ลำดับของ pole" ที่สูงกว่า ตัวอย่างเช่นเครื่อง 12-pole จะมีขดลวด 36 ชุด (ระยะห่าง 10°) ข้อดีคือสามารถใช้ความเร็วต่ำได้ ตัวอย่างเช่นเครื่อง 2-pole ทำงานที่ 3600 รอบต่อนาทีแต่เครื่อง 12-pole ทำงานที่ 600 รอบต่อนาทีเพื่อผลิตความถี่เดียวกัน วิธีนี้ทำได้สำหรับเครื่องขนาดใหญ่
 
ถ้าโหลดในระบบสามเฟสจะมีความสมดุลกันทุกเฟส จะไม่มีการไหลของกระแสที่นิวทรอล แม้จะอยู่ในสภาวะโหลดไม่สมดุล (เชิงเส้น) ที่เลวร้ายที่สุด กระแสนิวทรอลก็จะไม่เกินกว่ากระแสสูงสุดของเฟส โหลดไม่เชิงเส้น (เช่นคอมพิวเตอร์) อาจต้องใช้สายนิวทรอลขนาดใหญ่ในแผงกระจายไฟเพื่อจัดการกับ Harmonics ที่เกิดขึ้น ฮาโมนิคส์สามารถทำให้กระแสในนิวทรอลสูงกว่ากระแสเฟสได้
บรรทัด 46:
สายนิวทรอลหรือสายดิน จะต่อระหว่างโลหะที่เป็นฝาตู้ใส่อุปกรณ์กับสายดิน ตัวนำนี้จะป้องกันไฟฟ้าดูด ในกรณีที่มีกระแสไฟฟ้ารั่วมาที่ฝาตู้โลหะนี้ การเชื่อมฝาตู้ที่เป็นโลหะทั้งหมดมาที่สายดินเพียงจุดเดียว จะทำให้แน่ใจได้ว่า จะมีเส้นทางของกระแสรั่วไปลงดินที่สั้นที่สุด กระแสที่รั่วนี้ จะต้องทำให้อุปกรณ์ป้องกันไฟฟ้ารั่ว (เบรกเกอร์, ฟิวส์)ทำงานเช่นเบรกเกอร์ตก หรือฟิวส์ละลายให้เร็วที่สุด สายที่เชื่อมตู้ทุกเส้นต้องมาลงดินที่ตู้กระจายไฟหลักหรือที่เดียวกับที่สายนิวทรอลต่อลงดิน
 
== ความถี่ของไฟ AC==
 
ความถี่ของระบบไฟฟ้าแตกต่างกันไปตามประเทศ; พลังงานไฟฟ้าส่วนใหญ่จะถูกสร้างขึ้นที่ 50 หรือ 60 เฮิรตซ์ บางประเทศมีส่วนผสมของความถี่ 50 Hz และ 60 Hz เช่นพลังงานไฟฟ้าในประเทศญี่ปุ่น ประเทศไทยใช้ความถี่ 50 Hz หรือ 50 รอบต่อวินาที หรือ ไฟฟ้าวิ่งจากโรงไฟฟ้ามาบ้านผู้ใช้ ไปกลับ 50 ครั้งต่อวินาที
บรรทัด 54:
การใช้งานนอกชายฝั่ง, การทหาร, อุตสาหกรรมสิ่งทอ, ในทะเล, คอมพิวเตอร์เมนเฟรม, เครื่องบินและยานอวกาศบางครั้งใช้ 400 Hz เพื่อประโยชน์ของน้ำหนักที่ลดลงของอุปกรณ์หรือเพิ่มความเร็วของมอเตอร์
 
== ผลกระทบที่ความถี่สูง ==
[[ก]]ระแสกระแสตรงไหลอย่างสม่ำเสมอตลอดหน้าตัดของลวด กระแสสลับที่ความถี่ใด ๆ ถูกบังคับให้ไหลห่างจากใจกลางลวด ให้ไปอยู่ผิวนอก เป็นเพราะการเร่งความเร็วของประจุไฟฟ้าในกระแสสลับสร้างคลื่นรังสีแม่เหล็กไฟฟ้าที่ลบล้างการแพร่กระจายของกระแสไฟฟ้าให้ออกไปจากกึ่งกลางของวัสดุที่มีค่าการนำไฟฟ้าสูง ปรากฏการณ์นี้เรียกว่า skin effect
 
ที่ความถี่สูงมาก ๆ กระแสจะไม่ไหลในเส้นลวด แต่ไหลบนพื้นผิวของลวดภายในความหนาของผิวเล็กน้อย ความลึกของผิวจะมีความหนาที่ทำให้ความหนาแน่นกระแสลดลง 63% แม้ที่ความถี่ค่อนข้างต่ำที่ใช้ในการส่งกำลังไฟฟ้​​า (50-60 Hz), การกระจายไม่สม่ำเสมอของกระแสไฟฟ้ายังคงเกิดขึ้นในตัวนำที่หนาพอ ตัวอย่างเช่นความลึกของผิวของตัวนำทองแดงจะอยู่ที่ประมาณ 8.57 มม. ที่ 60 Hz, ดังนั้น ตัวนำที่กระแสสูงมักจะกลวงเพื่อลดมวลและค่าใช้จ่าย
บรรทัด 61:
เนื่องจากกระแสไฟฟ้ามีแนวโน้มที่จะไหลในผิวรอบตัวนำ, พื้นที่หน้าตัดของตัวนำจะลดลง ทำให้ความต้านทานของตัวนำในระบบไฟฟ้ากระแสสลับสูงขึ้น เพราะความต้านทานจะแปรผกผันกับพื้นที่หน้าตัด ความต้านทาน AC มักจะสูงกว่าความต้านทาน DC มาก ก่อให้เกิดการสูญเสียพลังงานที่สูงขึ้นมากเนื่องจากปรากฏการณ์ ohmic heating (หรือเรียกว่าการสูญเสีย I2R)
 
=== เทคนิคการลดความต้านทาน AC ===
สำหรับความถี่ต่ำถึงความถี่กลาง ตัวนำสามารถถักเป็นสายเกลียว แต่ละเส้นเคลือบฉนวน สายไฟที่สร้างขึ้นโดยใช้เทคนิคนี้เรียกว่า Litz wire วิธีนี้จะช่วยบรรเทาผลกระทบจาก skin effect ด้วยการบังคับให้กระแสกระจายเท่าเทียมกันตลอดหน้าตัดของสายเกลียว Litz wire ถูกนำมาใช้ทำ ตัวเหนี่ยวนำคุณภาพสูง ลดการสูญเสียในตัวนำกระแสสูงแต่ความถี่ต่ำ และขดลวดของอุปกรณ์ที่ใช้คลื่นวิทยุความถี่สูงขึ้น (ถึงหลายร้อยกิโลเฮิร์ตซ์) เช่นเพาเวอร์ซัพพลายแบบสลับโหมด และหม้อแปลงไฟฟ้​​าคลื่นความถี่วิทยุ
 
=== เทคนิคในการลดการสูญเสียรังสี ===
ตามที่ได้กล่าวไว้ข้างต้น กระแสสลับเกิดจากประจุไฟฟ้าภายใต้ความเร่งเป็นระยะ ๆ ซึ่งทำให้เกิดการแผ่กระจายของคลื่นแม่เหล็กไฟฟ้า พลังงานที่แผ่ออกมาจะหายไป ทั้งนี้ขึ้นอยู่กับความถี่ การใช้เทคนิคหลายอย่างจะสามารถลดการสูญเสียอันเนื่องมาจากการแผ่กระจายนั้น
 
=== สายบิดเป็นคู่ ===
ที่ความถี่สูงถึงประมาณ 1 GHz, สายแต่ละคู่จะถูกบิดเป็นเกลียวเข้าด้วยกัน เรียกว่า twisted pair ซึ่งจะช่วยลดความสูญเสียที่เกิดจากการแผ่รังสีแม่เหล็กไฟฟ้าและเหนี่ยวนำต่าง ๆ คู่บิดที่ต้องใช้กับระบบการส่งสัญญาณที่มีความสมดุลเพื่อให้ทั้งสองสายพกพากระแสเท่ากัน แต่ทิศทางตรงข้ามกัน ลวดแต่ละในคู่บิดจะแผ่กระจายสัญญาณออกมา แต่มันจะถูกหักล้างอย่างมีประสิทธิภาพโดยรังสีจากสายอื่น ๆ มีผลทำให้เกิอบจะไม่มีการสูญเสียจากการแผ่รังสีเลย
 
=== สาย coaxial ===
สาย coaxial มักใช้กับความถี่เสียงหรือสูงกว่าเพื่อความสะดวก ประกอบด้วยลวดตัวนำอยู่ภายในหลอดตัวนำแยกจากกันด้วยชั้นของไดอิเล็กทริก กระแสไฟฟ้าที่ไหลในตัวนำด้านในมีค่าเท่ากับและตรงข้ามกับกระแสที่ไหลบนพื้นผิวด้านในของหลอด สนามแม่เหล็กไฟฟ้าจึงมีอย่างสมบูรณ์ภายในหลอดและ (โดยจินตนาการ) ไม่มีการสูญเสียพลังงานจากการแผ่รังสีหรือเชื่อมถึงกันนอกหลอด สาย coaxial มีการสูญเสียเล็กน้อยที่ยอมรับได้สำหรับความถี่สูงถึงประมาณ 5 GHz สำหรับความถี่ไมโครเวฟที่สูงกว่า 5 GHz ความสูญเสีย (สาเหตุหลักจากความต้านทานไฟฟ้าของตัวนำใส้กลาง) มากเกินไป ทำให้ waveguide เป็นตัวกลางในการส่งคลื่นที่มีประสิทธิภาพมากกว่า สาย coaxial ที่มีอากาศแทนสารไดอิเล็กทริกเป็นที่ต้องการเพราะสามารถส่งกำลังด้วยความสูญเสียที่น้อยกว่า
 
=== Waveguides ===
ท่อนำคลื่นคล้ายกับสาย coax เนื่องจากทั้งสองชนิดนี้ประกอบด้วยท่อ แต่ความแตกต่างอยู่ที่ท่อนำคลื่นไม่ได้มีตัวนำภายใน ท่อนำคลื่นอาจมีรูปแบบหน้าตัดอะไรก็ได้ แต่ส่วนใหญ่เป็นรูปสี่เหลี่ยมผืนผ้า เพราะท่อนำคลื่นไม่ได้มีตัวนำภายในเพื่อส่งพลังงานในรูปกระแส แต่ส่งโดยสนามแม่เหล็กไฟฟ้า ถึงแม้ว่ากระแสที่พื้นผิวจะไหลในผนังด้านในของท่อ กระแสพื้นผิวไม่ส่งพลังงาน พลังงานจะถูกส่งโดยสนามแม่เหล็กไฟฟ้า กระแสพื้นผิวเกิดจากสนามแม่เหล็กไฟฟ้าและมีผลในการเก็บสนามไฟฟ้าไว้ภายในท่อนำคลื่นและป้องกันการรั่วไหลของคลื่นออกนอกท่อนำคลื่น
 
ท่อนำคลื่นมีขนาดเป็นสัดส่วนกับความยาวคลื่นที่จะถูกส่ง ดังนั้นท่อนำคลื่นจึงเป็นความเป็นไปได้อย่างเดียวสำหรับความถี่ย่านไมโครเวฟ นอกจากความเป็นไปได้ทางด้านกลไกแล้ว ความต้านทานไฟฟ้าของโลหะที่ใช้สร้างผนังของท่อนำคลื่นทำให้คลื่นกระจาย (กระแสพื้นผิวทีไหลบนตัวนำที่มีรอยต่อหลวมทำให้เกิดความร้อน) ที่ความถี่สูง ๆ การสูญเสียพลังงานอันเนื่องมาจากความร้อนจะมีขนาดใหญ่เกินกว่าจะยอมรับได้
 
=== ใยแก้วนำแสง ===
ที่ความถี่สูงกว่า 200 GHz, ขนาดของท่อนำคลื่นเล็กลงมาก ๆ และ ohmic loss ในผนังท่อนำคลื่นมีจำนวนมาก แต่ใยแก้วนำแสงซึ่งเป็นรูปแบบของท่อนำคลื่นไดอิเล็กทริกสามารถถุกนำมาใช้ได้แทน สำหรับความถี่ดังกล่าววิธีส่งพลังงานด้วยแรงดันไฟฟ้าและกระแส ใช้ไม่ได้แล้ว
 
== คณิตศาสตร์ของแรงดันไฟฟ้า AC ==
[[ไฟล์:Sine wave 2.svg|thumb|140px|คลื่นไซน์มากกว่าหนึ่งรอบ (360 °) เส้นประแสดงให้เห็นถึงค่า root mean square (RMS) ที่ประมาณ 0.707 ของค่าสูงสุด (peak)]]
กระแสสลับไปด้วยกัน (หรือเกิดจาก) กับแรงดันไฟฟ้า แรงดันไฟฟ้ากระแสสลับ v สามารถอธิบายทางคณิตศาสตร์ว่าเป็นฟังชั่นของเวลาโดยสมการต่อไปนี้:
 
:{{Center|<math>v(t)=V_\mathrm{peak}\cdot\sin(\omega t)</math>,}}
 
เมื่อ
where
* <math>\displaystyle V_{\rm peak}</math>เป็นค่า peak voltage (หน่วย: [[โวลต์]]),
* <math>\displaystyle\omega</math> เป็น [[ความถี่เชิงมุม]] (unit: [[ เรเดียนต่อวินาที]])
** ความถี่เชิงมุมสัมพันธ์กับความถี่ทางกายภาพ, <math>\displaystyle f</math> (หน่วย = [[เฮิรตซ์]]), มีหน่วยเป็นจำนวนรอบต่อวินาที, ตามสูตร <math>\displaystyle\omega = 2\pi f</math>.
*<math>\displaystyle t</math> เป็นเวลา (หน่วย: [[วินาที]]).,
 
บรรทัด 96:
 
 
=== กำลังงานและค่า root mean square ===
 
ความสัมพันธ์ระหว่างแรงดันไฟฟ้าและกำลังงานคือ
 
:{{Center|<math>p(t) = \frac{v^2(t)}{R}</math> }}
เมื่อ <math>R</math> แทนความหมายเป็น load resistance.โหลดความต้านทาน
&nbsp;
แทนที่จะใช้กำลังงานในจุดใดจุดหนึ่ง <math>p(t)</math> ในทางปฏิบัติ จะใช้กำลังงานในเวลาเฉลี่ย (ที่ ๆ ค่าเฉลี่ยจะถูกกระทำในจำนวนเต็มรอบใด ๆ) ดังนั้นแรงดันไฟฟ้า AC มักจะแสดงเป็นค่า root mean square (RMS) เขียนเป็น <math>V_{\rm rms}</math> ดังนั้น
 
:{{Center|<math>P_{\rm time~averaged} = \frac{{V^2}_{\rm rms}}{R}.</math>}}
 
สำหรับแรงดันไฟฟ้ารูปซายน์:
 
:{{Center|<math>V_\mathrm{rms}=\frac{V_\mathrm{peak}}{\sqrt{2}}.</math>}}
 
ค่า <math>\sqrt{2}</math>ถูกเรียกว่า crest factor แตกต่างกันตามรูปคลื่นที่แตกต่างกัน
บรรทัด 120:
:<math>V_\mathrm{rms}=\sqrt{\frac{1}{T} \int_0^{T}{v^2(t) dt}}.</math>
 
=== ตัวอย่าง ===
เพื่อแสดงให้เห็นถึงแนวคิดเหล่านี้ พิจารณาไฟ 230&nbsp;V ACโวลต์ ที่ใช้ในหลายประเทศทั่วโลก เพราะค่า RMS = 230&nbsp;V หมายความว่ากำลังงานเฉลี่ยตามเวลา เทียบเท่ากับกำลังงานที่ส่งมาจากแรงดัน DC 230 โวลต์จารณาถึงค่าแรงดันไฟฟ้าสูงสุด (แอมปลิจูด) เราสามารถจัดเรียง สมการข้างต้นใหม่ว่า :
 
:{{Center|<math>V_\mathrm{peak}=\sqrt{2}\ V_\mathrm{rms}.</math>}}
 
สำหรับไฟฟ้ากระแสสลับ 230&nbsp;V AC,โวลต์ แรงดันไฟฟ้าสูงสุดจึงเป็น <math>\scriptstyle V_\mathrm{peak}</math>หรือประมาณ 325&nbsp;V ค่า peak-to-peak <math>\scriptstyle V_\mathrm{P-P}</math> ของ 230&nbsp;V AC เป็นสองเท่าหรือประมาณ 650&nbsp;V. โวลต์
 
== ดูเพิ่ม ==
* [[ไฟฟ้ากระแสตรง]]
 
* [[กระแสไฟฟ้า]]
*[[AC power]]
* [[เฮิรตซ์]]
*[[ไฟฟ้ากระแสตรง]]
*[[กระแสไฟฟ้า]]
*[[Electrical wiring]]
*[[Heavy-duty power plugs]]
*[[เฮิรตซ์]]
*[[Mains power systems]]
*[[AC power plugs and sockets]]
*[[Utility frequency]]
*[[War of Currents]]
*[[AC/DC receiver design]]
==อ้างอิง==
{{รายการอ้างอิง}}
{{คอมมอนส์-หมวดหมู่|Alternating Current}}
 
{{โครงฟิสิกส์}}
[[หมวดหมู่:พลังงานไฟฟ้า]]
[[หมวดหมู่:วิศวกรรมไฟฟ้า]]
{{โครงฟิสิกส์}}