ผลต่างระหว่างรุ่นของ "ระบบจ่ายไฟฟ้าแก่ทางรถไฟ"

=== กระแสตรง ===
 
ระบบการใช้พลังงานไฟฟ้าที่ใช้ในช่วงต้นใช้แรงดันต่ำ มอเตอร์ไฟฟ้าบนรถไฟได้รับกระแสไฟฟ้าโดยกระแสตรงจากแหล่งจ่ายกลาง และถูกควบคุมโดยใช้ความต้านทานเริ่มต้นที่ถูกต่อขนานแบบก้าวหน้าเมื่อรถไฟเพิ่มความเร็วและใช้รีเลย์ที่เชื่อมต่อการทำงานของมอเตอร์แบบอนุกรมหรือแบบขนาน
[[ไฟล์:Tyne&Wear Metrotrain at Kingston Park station.jpg|thumb|250px|สาย Tyne and Wear Metro เป็นรถไฟฟ้าสายเดียวในสหราชอาณาจักรที่ใช้ไฟ 1,500 V DC]]
แรงดันที่พบมากที่สุดเป็นแรงดันไฟฟ้ากระแสตรง 600 V และ 750 V สำหรับรถรางและรถไฟฟ้าใต้ดิน, และ 1500 V, 650/750 V สำหรับรางที่สามสำหรับภาคใต้ในอดีตของสหราชอาณาจักร, และ 3 กิโลโวลต์สำหรับเหนือศีรษะ, ไฟฟ้าแรงดันไฟฟ้าที่ต่ำกว่ามักจะใช้กับระบบรางทีสามหรือระบบรางที่สี่, ในขณะที่แรงดันไฟฟ้าที่สูงกว่า 1 กิโลโวลต์ ปกติจะจำกัดเฉพาะใช้ในการเดินสายไฟในระบบเหนือศีรษะสำหรับเพื่อเหตุผลทางด้านความปลอดภัย. รถไฟชานเมืองสาย (S-Bahn) ในฮัมบูร์ก, เยอรมนีดำเนินงานโดยใช้รางที่สามที่แรงดัน 1200 V, ฝรั่งเศสสาย SNCF Cu​​loz-Modane ในเทือกเขาแอลป์ใช้ 1,500 v ในรางที่สาม จนกระทั่ง 1976 เมื่อโซ่ถูกติดตั้งและรางสามถูกรื้อออก. ในสหราชอาณาจักรทางตอนใต้ของกรุงลอนดอนใช้ 750 V กับรางที่สามถูกนำมาใช้ ในขณะที่ 660 V ถูกนำมาใช้เพื่อให้การเดินรถระหว่างที่ทำงานอยู่บนเส้นที่ใช้ร่วมกันกับรถไฟใต้ดินลอนดอนซึ่งใช้ 630 V กับระบบรางที่สี่ แต่ด้วยที่รางที่สี่ (กลาง) ที่เชื่อมต่อกับรางวิ่งในพื้นที่ระหว่างการทำงาน. บางเส้นภายในลอนดอนยังคงการดำเนินงานที่ 660 โวลต์เนื่องจากการเชื่อมต่อกับเส้นที่ใช้ร่วมกันหรือด้วยเหตุผลเพื่อเป็นตำนาน ภายในลอนดอนสายใหม่ทั้งหมด (ใต้ดิน) เป็น 750 โวลต์
 
ในช่วงกลางศตวรรษที่ 20 converter แบบ rotary หรือวงจรเรียงกระแสแบบปรอทโค้งถูกนำมาใช้ในการแปลงไฟ AC เป็น DC ที่จำเป็นต้องใช้ที่สถานีป้อน วันนี้การแปลงดังกล่าวมักจะทำโดยเซมิคอนดักเตอร์วงจรเรียงกระแสหลังจากลดความแรงดันลงจากแหล่งจ่ายสาธารณูปโภค
 
ระบบ DC ค่อนข้างง่าย แต่ต้องใช้สายหนาและระยะทางสั้น ระหว่างสถานีป้อนเพราะใช้กระแสสูงมาก นอกจากนี้ยังมีการสูญเสียความต้านทานอย่างมีนัยสำคัญ สถานีป้อนจำเป็นต้องมีการตรวจสอบอย่างต่อเนื่อง ระยะห่างระหว่างสองสถานีป้อนที่ 750 V บนระบบรางที่สามประมาณ 2.5 กิโลเมตร (1.6 ไมล์) ระยะห่างระหว่างสองสถานีป้อนที่ 3 กิโลโวลต์เป็นเรื่องเกี่ยวกับ 7.5 กิโลเมตร (4.7 ไมล์)
 
ถ้าบนขบวนรถไฟมีอุปกรณ์ไฟฟ้าอื่นเช่นพัดลมและคอมเพรสเซอร์ ถ้าต้องใช้พลังงานจากมอเตอร์ที่เลี้ยงโดยตรงจากแหล่งจ่ายแรงฉุด สายเคเบิลที่เป็นสายส่งอาจจะมีขนาดใหญ่ขึ้นเนื่องจากต้องเพิ่มขนาดของสายและแนวนกันความร้อนฉนวน ทางเลือกคืออุปกรณ์เหล่านั้นสามารถขับเคลื่อนจากชุดมอเตอร์-เครื่องกำเนิดไฟฟ้า ซึ่งเป็นทางเลือกของการเปิดหลอดไฟ incandescent lights มิฉะนั้นจะต้องมีการเชื่อมต่อเป็นหลอดไฟกันเป็นแถวยาวเนื่องจากความดันที่ส่งให้มีขนาดสูงมาก (หลอดไฟที่ออกแบบมาเพื่อทำงานที่แรงดันไฟฟ้า (750V) จะทำงานโดยไม่มีประสิทธิภาพ) ตอนนี้ converter แบบ solid-state (SIVs) และไฟเรืองแสงสามารถถูกนำมาใช้งานได้ ทางเลือกคือ ไฟ DC สามารถแปลงเป็นไฟฟ้า AC ผ่านอินเวอร์เตอร์บนตู้รถไฟเพื่อจ่ายพลังงานให้กับอุปกรณ์เสริมเหล่านั้น และด้วยการเปิดตัวของมอเตอร์แรงฉุด AC รถไฟทั้งขบวน (ตัวอย่างคือ ระบบขับเคลื่อนหลายตู้ ชั้น FP ของนิวซีแลนด์ ใช้ไฟ 1500 V DC จากสายส่งชานเมืองในเวลลิงตัน ซึ่งแปลงไฟกระแสตรงเป็นไฟฟ้ากระแสสลับบนตู้รถไฟสำหรับการใช้งานโดยฉุดมอเตอร์และอุปกรณ์เสริมบนตู้รถไฟ)
 
=== ระบบการจ่าย ===
เพื่อป้องกันความเสี่ยงของ out of phase ของไฟฟ้าจากหลายแหล่ง หลายช่วงของสายส่งจากสถานีที่ต่างกันจะต้องถูกแยกออกอย่างเคร่งครัด สิ่งนี่ทำได้โดย Neutral Section (หรือ Phase Breaks), มักจะถูกจัดให้ที่สถานีจ่ายและอยู่ระหว่างสถานีจ่ายนั้น แม้ว่าปกติมีเพียงครึ่งหนึ่งที่ทำงานอยู่ในเวลาใดเวลาหนึ่ง ที่เหลือถูกจัดให้เพื่อให้สถานีป้อนปิดตัวลงและพลังงานจะถูกจ่ายมาจากสถานีป้อนที่อยู่ติดกัน Neutral Section มักจะประกอบด้วยส่วนสายดินของลวดซึ่งถูกแยกออกจากสาย live โดยวัสดุฉนวน, ลูกถ้วยเซรามิกที่ถูกออกแบบเพื่อให้อุปกรณ์รับกระแสไฟฟ้าบนหัวรถจักร (pantograph) สามารถจะเคลื่อนออกมาจากส่วนหนึ่งไปที่ส่วนอื่น ๆได้อย่างราบรื่น ส่วนสายดินป้องกันการเกิดอาร์คจากเซ็กชั่น live หนึ่งไปยังอีกเซ็กชั่นหนึ่ง เพราะความแตกต่างของแรงดันไฟฟ้าที่อาจจะสูงกว่าแรงดันไฟฟ้าระบบปกติมาก ถ้าเซ็กชั่น live มีเฟสต่างกันและและเบรกเกอร์วงจรป้องกันอาจจะไม่สามารถหยุดยั้งกระแสได้อย่างปลอดภัย เพื่อป้องกันความเสี่ยงจากการอาร์คระหว่างสาย live กับดิน, เมื่อขบวนรถวิ่งผ่านส่วน neutral, รถไฟต้องไหลไปเองและวงจรเบรกเกอร์จะต้องเปิด ในหลาย ๆ กรณีงานนี้จะทำโดยพนักงานขับรถ. เพื่อช่วยพวกเขา, กระดานเตือนจะถูกจัดให้ก่อนที่จะถึงส่วน neutral กระดานเตือนต้วต่อไปจะแจ้งเตือนพนักงานขับรถให้ปิดวงจรเบรกเกอร์อีกครั้งหนึ่ง, พนักงานขับรถจะต้องไม่ทำเช่นนี้จนกว่า pantograph ตัวหลังจะผ่านกระดานไปแล้ว ในสหราชอาณาจักรอุปกรณ์ที่เรียกกันว่า Automatic Power Control (APC) จะเปิดและปิดวงจรไฟฟ้านี้โดยอัตโนมัติ ซึ่งทำได้โดยการใช้ชุดของแม่เหล็กถาวรควบคู่ไปกับการสลับเส้นทางด้วยเครื่องตรวจจับบนรถไฟ การดำเนินการเฉพาะที่จำเป็นโดยคนขับก็คือการปิดพลังงานไฟฟ้าและปล่อยให้ขบวนไหลเลื่อนไปเอง อย่างไรก็ตามกระดานเตือนยังคงมีในจุดที่และในส่วนที่กำลังเข้าไปยังส่วน neutral
 
ในเส้นทางรถไฟความเร็วสูงฝรั่งเศส, ในรางเชื่อมอุโมงค์ข้ามช่องแคบความเร็วสูงที่ 1 ของสหราชอาณาจักร, และในอุโมงค์ข้ามช่องแคบ, neutral section จะถูกควบคุมโดยอัตโนมัติ
 
ในสาย [[ชิงกันเซ็ง]] ของญี่ปุ่น section ที่ switch ด้วยกราวด์ ถูกติดตั้งแทน neutral section. section จะตรวจจับขบวนรถไฟที่กำลังวิ่งอยู่ภายใน section นี้ และทำการสลับแหล่งพลังงานโดยอัตโนมัติภายใน 0.3 วินาที, ซึ่งไม่จำเป็นต้องปิดไฟอีกเลย
 
== การใช้พลังงานไฟฟ้าในโลก ==
สายเหนือศีรษะส่วนใหญ่ไม่เว้นระยะความสูงให้พอเพียงสำหรับรถโดยสารสองชั้น ค่าใช้จ่ายในการบำรุงรักษาของการเดินรถอาจจะเพิ่มขึ้น แต่หลายระบบอ้างว่าค่าใช้จ่ายลดลงเนื่องจากการลดการสึกหรอและจากขบวนรถมีน้ำหนักเบาลง มีค่าใช้จ่ายบางรายการในการบำรุงรักษาเพิ่มเติมที่เกี่ยวข้องกับอุปกรณ์ไฟฟ้า เช่น สถานีไฟฟ้าย่อย และเสาขึงของสายเหนือศีรษะ แต่ถ้ามีการจราจรหนาแน่นเพียงพอ รายได้มีมูลค่าสูงกว่าค่าใช้จ่ายในการบำรุงรักษาและค่าใช้จ่ายในการเดินรถอย่างมีนัยสำคัญ
 
ผลกระทบกับจากระบบเครือข่ายพลังงานเป็นปัจจัยขนาดใหญ่สำคัญที่มีผลต่อการตัดสินใจใช้พลังงานไฟฟ้า เมื่อมีการแปลงสายเปลี่ยนแปลงจากการเดินรถพลังงานอื่น เช่น น้ำมันให้เป็นการใช้พลังงานไฟฟ้า, การเชื่อมต่อกับสายระบบเดินรถอื่น ๆ จะต้องได้รับการพิจารณา การใช้ไฟฟ้าบางสายระบบเดินรถก็ถูกรื้อออกเนื่องจากทางผ่านเป็นบริเวณที่ไม่มีสายระบบเครือข่ายไฟฟ้า ถ้าทางผ่านเป็นพื้นที่มีประโยชน์,ทางเศรษฐกิจ การสลับขบวนแม้ที่ต้องใช้เวลามากต้องมีอาจเกิดขึ้นเพื่อเชื่อมต่อดังกล่าว หรือต้องใช้ระบบเครื่องยนต์สองโหมดที่มีราคาแพง เรื่องนี้เป็นประเด็นส่วนใหญ่สำหรับการเดินทางระยะไกล แต่หลายสายการเดินรถเข้ามาครอบงำโดยใช้ขบวนสินค้าแบบลากยาว (ปกติใช้บรรทุกถ่านหิน, แร่ธาตุ, หรือคอนเทนเนอร์ไปหรือออกจากท่าเรือ) ในทางทฤษฎีรถไฟเหล่านี้อาจเพลิดเพลินดูคุ้มค่าไปกับการลดต้นทุนผ่านการใช้พลังงานไฟฟ้า แต่อาจจะมีราคาแพงเกินไปที่จะขยายการใช้พลังงานไฟฟ้าไปยังพื้นที่ที่โดดเดี่ยวจากระบบเครือข่ายพลังงาน นอกเสียจากเครือข่ายขนส่งทั้งหมดจะมีกระแสไฟฟ้า บริษัทเหล่านั้นมักจะพบว่าพวกเขาต้องการที่จะยังคงใช้รถไฟดีเซลแม้ว่ามีบางส่วนเป็นระบบไฟฟ้า ความต้องการที่เพิ่มขึ้นสำหรับการขนส่งคอนเทนเนอร์ที่มีประสิทธิภาพมากขึ้นเมื่อใช้รถสองชั้นยังมีประเด็นที่มีผลกระทบต่อเครือข่ายของการจ่ายไฟฟ้า เนื่องจากมีระยะเหนือศีรษะไม่เพียงพอของสายไฟฟ้าเหนือศีรษะ แต่แม้ว่าการจ่ายพลังงานไฟฟ้าสามารถถูกสร้างหรือถูกปรับเปลี่ยนเพื่อให้มีช่องว่างเหนือศีรษะเพิ่มเพียงพอได้ แต่เพราะมีค่าใช้จ่ายเพิ่มเติม
 
นอกจากนี้ยังมีปัญหาของการเชื่อมต่อระหว่างผู้ให้บริการไฟฟ้าที่แตกต่างกัน โดยเฉพาะอย่างยิ่งการเชื่อมต่อสายระหว่างสายไฟฟ้าภายในเมืองกับไฟฟ้าสำหรับการโดยสาร, และระหว่างสายชุมชนด้วยกันแต่คนละมาตรฐาน นี้สามารถทำให้เกิดการใช้พลังงานไฟฟ้าของการเชื่อมต่อบางอย่างที่จะมีราคาแพงมากเพียงเพราะผลกระทบในส่วนที่มีการเชื่อมต่อ หลายสายนำมาตรฐานที่แตกต่างกันมาซ้อนทับกันเพื่อหลีกเลี่ยงการเปลี่ยนตู้สัมภาระ ในบางกรณีมีรถไฟดีเซลวิ่งไปตามเส้นทางไฟฟ้​​าอย่างสมบูรณ์และนี้อาจจะเป็นเพราะความไม่ลงรอยกันของมาตรฐานการใช้พลังงานไฟฟ้าไปตามเส้นทาง
 
== สรุปข้อดีและข้อเสีย ==
* เส้นทางที่มีการใช้ใช้งานน้อยอาจจะไม่เหมาะสมสำหรับการใช้พลังงานไฟฟ้า (โดยเฉพาะอย่างยิ่งการสร้างพลังงานจากการเบรก) เพราะค่าใช้จ่ายที่สูงกว่าของการบำรุงรักษาเอาชนะค่าใช้จ่ายในมากกว่ารายได้การเดินรถ ดังนั้นส่วนใหญ่สายทางไกลในอเมริกาเหนือและประเทศกำลังพัฒนาจำนวนมากไม่ได้ใช้ไฟฟ้าเนื่องจากความถี่ในการเดินรถที่ค่อนข้างต่ำ
* หัวรถจักรไฟฟ้าอาจถูกสร้างได้อย่างง่ายดายโดยให้มีพลังมากกว่าหัวรถจักรดิเซลส่วนใหญ่ สำหรับงานโดยสารทั่วไป มันเป็นไปได้ที่จะใช้ด้วยเครื่องยนต์ดีเซล (ดู 'ICE TD') แต่ไม่ใช่ที่ความเร็วสูงๆ ซึ่งพิสูจน์ได้ว่าแพงและไม่ควรนำมาปฏิบัติ ดังนั้นเกือบทั้งหมดของรถไฟความเร็วสูงจะเป็นไฟฟ้า
* พลังงานที่สูงของหัวรถจักรไฟฟ้าให้ความสามารถในการดึงตู้ขนส่งสินค้าที่ความเร็วสูงกว่าบนทางลาดชัน; ในสภาพการจราจรที่ผสม สิ่งนี้เพิ่มกำลังความสามารถและลดเวลาระหว่างขบวนลง พลังงานที่สูงขึ้นของหัวรถจักรไฟฟ้าและการใช้กระแสไฟฟ้ายังสามารถเป็นทางเลือกที่ถูกกว่าสำหรับระบบรางใหม่และรางลาดชั้นน้อย ถ้าหากน้ำหนักรถไฟจะเพิ่มขึ้นในระบบ
 
=== ประสิทธิภาพการใช้พลังงาน ===
รถไฟที่ใช้ไฟฟ้าเป็นการใช้พลังงานที่มีประสิทธิภาพกว่ารถไฟดีเซล. ถ้าไดัรับพลังงานจากสถานีผลิตไฟฟ้าคาร์บอนต่ำ, รถไฟไฟฟ้าผลิตปล่อยคาร์บอนไดอ๊อกไซด์น้อยลง
รถไฟไฟฟ้าไม่จำเป็นต้องแบกน้ำหนักของหัวลากหลัก, สายส่งและเชื้อเพลิง นี่คือการชดเชยบางส่วนกับน้ำหนักของอุปกรณ์ไฟฟ้า
 
การสร้างพลังงานจากระบบเบรกส่งไฟฟ้าคืนระบบเพื่อที่ว่ามันอาจจะเอาไปใช้ที่อื่น, โดยรถไฟอื่น ๆ ในระบบเดียวกันหรือกลับไปยังเครือข่ายส่งกำลังไฟฟ้า นี้จะเป็นประโยชน์โดยเฉพาะอย่างยิ่งในพื้นที่ที่เป็นภูเขาในที่ซึ่งรถไฟที่โหลดหนักต้องขึ้นลงทางลาดชัน
 
ไฟฟ้าสถานีกลางสามารถสร้างขึ้นพลังงานได้อย่างมีประสิทธิภาพสูงกว่าเครื่องยนต์/เครื่องกำเนิดไฟฟ้าเคลื่อนที่ โรงไฟฟ้​​าเชื้อเพลิงฟอสซิลขนาดใหญ่ทำงานที่มีประสิทธิภาพสูง และสามารถนำไปใช้ให้ความร้อนหรือผลิตความเย็นให้กับชุมชนซึ่งจะนำไปสู่​​การเพิ่มประสิทธิภาพโดยรวมสูงขึ้น
 
สามารถใช้แหล่งพลังงานที่ไม่เหมาะสมสำหรับการผลิตไฟฟ้าแบบเคลื่อนที่ได้ เช่น พลังงานนิวเคลียร์, โรงไฟฟ้าพลังน้ำ, หรือพลังงานลม หรือแก๊ส ตามที่ได้รับการยอมรับอย่างกว้างขวางทั่วโลกของปริมาณพลังงานสำรอง สำรองของเชื้อเพลิงเหลวมีน้อยกว่าก๊าซและถ่านหินมาก (ที่ 42, 167 และ 416 ปีตามลำดับ) เหมาะกับประเทศส่วนใหญ่ที่มีเครือข่ายรถไฟขนาดใหญ่ที่ไม่ได้มีน้ำมันสำรอง แต่ประเทศที่มี, เช่น ประเทศสหรัฐอเมริกาและสหราชอาณาจักร ได้ใช้น้ำมันสำรองของตนออกไปมากและได้รับความเดือดร้อนการส่งออกน้ำมันที่ลดลงมานานหลายทศวรรษ ดังนั้นนอกจากนี้ยังมีแรงจูงใจทางเศรษฐกิจที่แข็งแกร่งเพื่อทดแทนเชื้อเพลิงอื่น ๆ แทนน้ำมัน รถไฟกระแสไฟฟ้ามักจะถือว่าเป็นเส้นทางสำคัญที่มีต่อการปฏิรูปรูปแบบการบริโภค.
75

การแก้ไข