ผลต่างระหว่างรุ่นของ "ไฟฟ้ากระแสสลับ"

เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
Tris T7 (คุย | ส่วนร่วม)
→‎ความถี่ของไฟ AC: เคาะวรรค
ป้ายระบุ: แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่
Tris T7 (คุย | ส่วนร่วม)
ป้ายระบุ: แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่
บรรทัด 55:
 
==ผลกระทบที่ความถี่สูง==
[[ก]]ระแสตรงไหลอย่างสม่ำเสมอตลอดหน้าตัดของลวด กระแสสลับที่ความถี่ใดๆใด ๆ ถูกบังคับให้ไหลห่างจากใจกลางลวด ให้ไปอยู่ผิวนอก เป็นเพราะการเร่งความเร็วของประจุไฟฟ้าในกระแสสลับสร้างคลื่นรังสีแม่เหล็กไฟฟ้าที่ลบล้างการแพร่กระจายของกระแสไฟฟ้าให้ออกไปจากกึ่งกลางของวัสดุที่มีค่าการนำไฟฟ้าสูง ปรากฏการณ์นี้เรียกว่า skin effect
 
ที่ความถี่สูงมากๆมาก ๆ กระแสจะไม่ไหลในเส้นลวด แต่ไหลบนพื้นผิวของลวดภายในความหนาของผิวเล็กน้อย ความลึกของผิวจะมีความหนาที่ทำให้ความหนาแน่นกระแสลดลง 63% แม้ที่ความถี่ค่อนข้างต่ำที่ใช้ในการส่งกำลังไฟฟ้​​า (50-60 Hz), การกระจายไม่สม่ำเสมอของกระแสไฟฟ้ายังคงเกิดขึ้นในตัวนำที่หนาพอ ตัวอย่างเช่นความลึกของผิวของตัวนำทองแดงจะอยู่ที่ประมาณ 8.57 มม. ที่ 60 Hz, ดังนั้น ตัวนำที่กระแสสูงมักจะกลวงเพื่อลดมวลและค่าใช้จ่าย
 
เนื่องจากกระแสไฟฟ้ามีแนวโน้มที่จะไหลในผิวรอบตัวนำ, พื้นที่หน้าตัดของตัวนำจะลดลง ทำให้ความต้านทานของตัวนำในระบบไฟฟ้ากระแสสลับสูงขึ้น เพราะความต้านทานจะแปรผกผันกับพื้นที่หน้าตัด ความต้านทาน AC มักจะสูงกว่าความต้านทาน DC มาก ก่อให้เกิดการสูญเสียพลังงานที่สูงขึ้นมากเนื่องจากปรากฏการณ์ ohmic heating (หรือเรียกว่าการสูญเสีย I2R)
บรรทัด 68:
 
===สายบิดเป็นคู่===
ที่ความถี่สูงถึงประมาณ 1 GHz, สายแต่ละคู่จะถูกบิดเป็นเกลียวเข้าด้วยกัน เรียกว่า twisted pair ซึ่งจะช่วยลดความสูญเสียที่เกิดจากการแผ่รังสีแม่เหล็กไฟฟ้าและเหนี่ยวนำต่างๆต่าง ๆ คู่บิดที่ต้องใช้กับระบบการส่งสัญญาณที่มีความสมดุลเพื่อให้ทั้งสองสายพกพากระแสเท่ากัน แต่ทิศทางตรงข้ามกัน ลวดแต่ละในคู่บิดจะแผ่กระจายสัญญาณออกมา แต่มันจะถูกหักล้างอย่างมีประสิทธิภาพโดยรังสีจากสายอื่น ๆ มีผลทำให้เกิอบจะไม่มีการสูญเสียจากการแผ่รังสีเลย
 
===สาย coaxial===
บรรทัด 76:
ท่อนำคลื่นคล้ายกับสาย coax เนื่องจากทั้งสองชนิดนี้ประกอบด้วยท่อ แต่ความแตกต่างอยู่ที่ท่อนำคลื่นไม่ได้มีตัวนำภายใน ท่อนำคลื่นอาจมีรูปแบบหน้าตัดอะไรก็ได้ แต่ส่วนใหญ่เป็นรูปสี่เหลี่ยมผืนผ้า เพราะท่อนำคลื่นไม่ได้มีตัวนำภายในเพื่อส่งพลังงานในรูปกระแส แต่ส่งโดยสนามแม่เหล็กไฟฟ้า ถึงแม้ว่ากระแสที่พื้นผิวจะไหลในผนังด้านในของท่อ กระแสพื้นผิวไม่ส่งพลังงาน พลังงานจะถูกส่งโดยสนามแม่เหล็กไฟฟ้า กระแสพื้นผิวเกิดจากสนามแม่เหล็กไฟฟ้าและมีผลในการเก็บสนามไฟฟ้าไว้ภายในท่อนำคลื่นและป้องกันการรั่วไหลของคลื่นออกนอกท่อนำคลื่น
 
ท่อนำคลื่นมีขนาดเป็นสัดส่วนกับความยาวคลื่นที่จะถูกส่ง ดังนั้นท่อนำคลื่นจึงเป็นความเป็นไปได้อย่างเดียวสำหรับความถี่ย่านไมโครเวฟ นอกจากความเป็นไปได้ทางด้านกลไกแล้ว ความต้านทานไฟฟ้าของโลหะที่ใช้สร้างผนังของท่อนำคลื่นทำให้คลื่นกระจาย (กระแสพื้นผิวทีไหลบนตัวนำที่มีรอยต่อหลวมทำให้เกิดความร้อน) ที่ความถี่สูงๆสูง ๆ การสูญเสียพลังงานอันเนื่องมาจากความร้อนจะมีขนาดใหญ่เกินกว่าจะยอมรับได้
 
===ใยแก้วนำแสง===
ที่ความถี่สูงกว่า 200 GHz, ขนาดของท่อนำคลื่นเล็กลงมากๆมาก ๆ และ ohmic loss ในผนังท่อนำคลื่นมีจำนวนมาก แต่ใยแก้วนำแสงซึ่งเป็นรูปแบบของท่อนำคลื่นไดอิเล็กทริกสามารถถุกนำมาใช้ได้แทน สำหรับความถี่ดังกล่าววิธีส่งพลังงานด้วยแรงดันไฟฟ้าและกระแส ใช้ไม่ได้แล้ว
 
==คณิตศาสตร์ของแรงดันไฟฟ้า AC ==