ผลต่างระหว่างรุ่นของ "กล้องจุลทรรศน์อิเล็กตรอน"

เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
Tris T7 (คุย | ส่วนร่วม)
ป้ายระบุ: แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่
Tris T7 (คุย | ส่วนร่วม)
ป้ายระบุ: แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่
บรรทัด 79:
 
*"fixation ทางเคมี" (fixation เป็นขั้นตอนที่สำคัญในวิทยาการด้านเนื้อเยื่อ ด้านพยาธิวิทยา และด้านชีววิทยาในการเตรียมเซ็กชั่นของเนื้อเยื่อไม่ให้เน่าสลาย) - สำหรับตัวอย่างทางชีวภาพที่มีจุดมุ่งหมายเพื่อสร้างความมั่นคงของโครงสร้างจุลโมเลกุลเคลื่อนที่ของตัวอย่างชิ้นงานโดยการเชื่อมขวางทางเคมีของโปรตีนที่มีอัลดีไฮด์เช่นฟอร์มาลดีไฮด์และ glutaraldehyde และไขมันที่มีออสเมียม tetroxide
*"การย้อมสีเชิงลบ" - สารแขวนลอยที่มีอนุภาคนาโนหรือวัสดุชีวภาพที่ละเอียด (เช่นไวรัสและแบคทีเรีย) จะถูกผสมในเวลาสั้น ๆ เข้ากับสารละลายเจือจางของสารละลายทึบอิเล็กตรอน ({{lang-en|electron-opaque solution}}) เช่น ammonium molybdate หรือ uranyl acetate (หรือ formate) หรือ phosphotungstic acid ส่วนผสมนี้จะถูกนำไปใช้กับกริดของ EM ที่เคลือบอย่างเหมาะสมจากนั้นจะถูกย้อมสีแล้วปล่อยให้แห้ง TEM จะถูกใช้เพื่อดูการเตรียมความพร้อมโดยไม่ชักช้าเพื่อให้ได้ผลลัพธ์ที่ดีที่สุด วิธีการมีความสำคัญในทางจุลชีววิทยาเพื่อชี้ชัดเกี่ยวกับโครงสร้างของสัตว์และพืชได้อย่างรวดเร็วแต่คร่าวๆคร่าว ๆ แต่ยังสามารถนำมาใช้เป็นพื้นฐานสำหรับการฟื้นฟู 3 มิติความละเอียดสูงโดยใช้วิธีการสร้างภาพด้วย EM อีกด้วยเมื่อฟิล์มคาร์บอนถูกใช้สำหรับการสนับสนุน นอกจากนี้การย้อมสีเชิงลบยังใช้สำหรับการสังเกตอนุภาคนาโนอีกด้วย
*"fixation ด้วยความเย็นยิ่งยวด" ({{lang-en|Cryofixation}}) - การแช่แข็งตัวอย่างชิ้นงานอย่างรวดเร็วมากๆมาก ๆ ในอีเทนเหลวและรักษาสภาวะที่อุณหภูมิไนโตรเจนเหลวหรือแม้แต่ฮีเลียมเหลวเพื่อให้น้ำก่อรูปเป็นน้ำแข็ง (ไม่ใช่ผลึก) แบบใสเหมือนแก้ว วิธีนี้จะเก็บรักษาชิ้นงานในช่วงเวลาสั้นๆสั้น ๆ ของสภาวะสารละลายของมัน สาขาในภาพรวมทั้งหมดที่เรียกว่ากล้องจุลทรรศน์อิเล็กตรอนแบบเย็นยิ่งยวด ({{lang-en|cryo-electron microscopy}}) ได้แยกสาขาออกจากเทคนิคนี้ ด้วยการพัฒนาของกล้องจุลทรรศน์อิเล็กตรอนแบบเย็นยิ่งยวดของเซ็กชั่นที่ใสเหมือนแก้ว ({{lang-en|cryo-electron microscopy of vitreous sections (CEMOVIS)}}) ตอนนี้มันเป็นไปได้ที่จะสังเกตเห็นตัวอย่างชิ้นงานได้จากตัวอย่างทางชีวภาพใดๆใด ๆ ที่ใกล้เคียงกับสภาวะแรกเริ่ม{{Citation needed|date=July 2008}}
*"การขจัดน้ำออก" ({{lang-en|Dehydration}}) - การอบแห้งแช่แข็งหรือการแทนที่น้ำด้วยตัวทำละลายอินทรีย์เช่นเอทานอลหรืออะซิโตน ตามด้วยการอบแห้งที่จุดวิกฤตหรือการแทรกซึมด้วยการฝังเรซิ่น
*"การฝัง-ตัวอย่างทางชีวภาพ" - หลังจากการขจัดน้ำออก เนื้อเยื่อที่จะส่องดูด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านจะถูกฝังเพื่อที่จะสามารถแบ่งเป็นหลายๆหลาย ๆ เซ็กชั่นให้พร้อมสำหรับการส่องดู ในการทำเช่นนี้เนื้อเยื่อจะถูกส่งผ่าน 'ตัวทำละลายถ่ายโอน' เช่นโพรพิลีนออกไซด์ (epoxypropane) จากนั้นก็แทรกซึมด้วยอีพอกซีเรซินเช่น Araldite, Epon หรือ Durcupan<ref>{{cite article
|title=Improvements in epoxy resin embedding methods
|author=Luft, J.H.
บรรทัด 91:
|year=1961
|pmc=2224998|pmid=13764136}}
</ref>; เนื้อเยื่อก็อาจจะถูกฝังโดยตรงในน้ำอะคริลิกเรซินที่ผสมกับน้ำได้ หลังจากเรซินกลายเป็นโพลิเมอร์ (แข็งตัว) ชิ้นตัวอย่างจะถูกตัดแบ่งให้เป็นชิ้นบางๆบาง ๆ (เซ็กชั่นที่บางเฉียบ) และย้อมสี - มันจะพร้อมสำหรับการส่องดู
*"การฝัง-วัสดุ" - หลังจากที่ฝังไว้ในเรซิน ชิ้นตัวอย่างมักจะถูกเจียและขัดผิวให้มันเหมือนกระจกโดยใช้วัสดุขัดแบบละเอียด กระบวนการขัดจะต้องดำเนินการอย่างระมัดระวังเพื่อลดรอยขีดข่วนและสิ่งแปลกปลอมอื่นๆอื่น ๆ ที่จะลดคุณภาพของภาพ
*"การบังเงาด้วยโลหะ" ({{lang-en|Metal shadowing}}) - โลหะ (เช่นทองคำขาว) จะถูกทำให้ระเหยจากอิเล็กโทรดเหนือหัวและจ่ายให้กับผิวหน้าของตัวอย่างชิ้นงานทางชีวภาพที่มุมมุมหนึ่ง ตามด้วยการสลายตัวของวัสดุชีวภาพในอ่างกรดเหลือไว้แต่เพียงพื้นผิวโลหะจำลองที่เหมือนเดิม จากนั้นแบบจำลองพื้นผิวโลหะนี้จะถูกตรวจสอบโดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน การแปรเปลี่ยนความหนาและมุมของพื้นผิวโลหะที่ช่วยให้ภาพเกิดขึ้นเนื่องจากอิเล็กตรอนที่ตกกระทบจะกระจายไปในทิศทางที่แตกต่างกันมากกว่าที่จะผ่านตัวมัน
*"การตัด section" - เป็นการสร้างชิ้นบางๆบาง ๆ ของชิ้นงาน กึ่งโปร่งใสให้กับอิเล็กตรอน โดยสามารถตัดบนเครื่องตัดชิ้นเนื้อขนาดจิ๋ว ({{lang-en|ultramicrotome}}) ด้วยมีดทำด้วยเพชรเพื่อผลิตชิ้นบางเฉียบหนาประมาณ 60-90 นาโนเมตร มีดทำด้วยแก้วใช้แล้วทิ้งยังสามารถนำมาใช้ได้เช่นกันเพราะพวกมันสามารถทำขึ้นในห้องปฏิบัติการและถูกกว่ามาก
*"การย้อมสี" - ใช้โลหะหนักเช่นตะกั่วหรือยูเรเนียมหรือทังสเตนเพื่อกระจายอิเล็กตรอนที่ใช้สร้าง จึงได้ความสว่างที่ตัดกันระหว่างโครงสร้างที่แตกต่างกันอันเนื่องมาจากวัสดุหลายอย่าง (โดยเฉพาะอย่างยิ่งทางชีวภาพ) เกือบจะ "โปร่งใส" ต่ออิเล็กตรอน (วัตถุที่มีเฟสอ่อนแอ) ในทางชีววิทยาตัวอย่างหลายชิ้นงานสามารถนำมาย้อมสี "พร้อมกัน" ก่อนที่จะฝังและทำหลังจากการตัด section ก้ได้ โดยปกติ section ที่บางจะถูกย้อมเป็นเวลาหลายนาทีด้วยสารละลายที่ประกอบด้วยน้ำหรือแอลกอฮอล์ของอะซิเตท uranyl ตามด้วยซิเตรตตะกั่วที่ประกอบด้วยน้ำ
*"เศษแตกหักแช่แข็งหรือรอยเจาะแช่แข็ง" - วิธีการเตรียมอย่างหนึ่งที่เป็นประโยชน์อย่างยิ่งเฉพาะสำหรับการตรวจสอบเยื่อไขมันและส่วนที่เป็นโปรตีนของมันในมุมมอง "ด้านหน้า" เนื้อเยื่อสดหรือเซลล์แขวนลอยจะถูกแช่แข็งอย่างรวดเร็ว (ด้วยความเย็นยิ่งยวด) จากนั้นทำให้แตกเป็นชิ้นเล็กๆโดยเพียงแค่เคาะให้แตกหรือโดยการใช้เครื่องตัดชิ้นเนื้อในขณะที่มีการคงระดับที่อุณหภูมิไนโตรเจนเหลว จากนั้นพื้นผิวที่แตกร้าวและเย็น (บางครั้ง "ถูกเจาะ" โดยการเพิ่มอุณหภูมิไปที่ประมาณ -100 องศาเซลเซียสเป็นเวลาหลายนาทีเพื่อรอให้น้ำแข็งบางส่วนระเหิด) จะถูกบังเงาด้วยไอระเหยของทองคำขาวหรือทองที่มุมเฉลี่ย 45° ในเครื่องสร้างไอระเหยสูญญากาศสูง ชั้นเคลือบที่สองของคาร์บอนที่ระเหยตั้งฉากกับระนาบพื้นผิวเฉลี่ยมักจะดำเนินการเพื่อปรับปรุงเสถียรภาพของสารเคลือบผิวจำลอง ตัวอย่างชิ้นงานจะถูกทำกลับไปที่อุณหภูมิและความดันห้อง จากนั้นแบบจำลองโลหะที่ถูก "บังเงาล่วงหน้า" ที่เปราะบางมากของพื้นผิวที่แตกหักจะถูกปล่อยออกมาจากวัสดุชีวภาพต้นแบบโดยการย่อยทางเคมีอย่างระมัดระวังด้วยกรดหรือสารละลายไฮโปคลอไรต์หรือผงซักฟอก Sodium dodecyl sulfate (SDS) แบบจำลองที่ยังคงลอยอยู่จะถูกล้างให้สะอาดให้ปราศจากสารเคมีตกค้างแล้วเกี่ยวอย่างระมัดระวังบนกริดละเอียด ทำให้แห้งแล้วส่องดูใน TEM