160,392
การแก้ไข
(แก้ไขเนื้อหา) ป้ายระบุ: แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่ |
ไม่มีความย่อการแก้ไข |
||
[[ไฟล์:Absolute value.svg|thumb|250px|กราฟของฟังก์ชันค่าสมบูรณ์]]
'''ค่าสัมบูรณ์''' หรือ '''มอดุลัส''' ({{lang-en|absolute value หรือ modulus}}) ใน[[คณิตศาสตร์]] คือ ผลต่างระหว่างจำนวนนั้นกับ 0 พูดง่ายๆคือ จำนวนที่ไม่มี[[เครื่องหมายลบ]] ตัวอย่างเช่น 3 คือค่าสัมบูรณ์ของ 3 และ −3
== นิยาม ==
นิยามได้ดังนี้: สำหรับ[[จำนวนจริง]]ใดๆ ''a'', '''ค่าสัมบูรณ์'''ของ ''a'' เขียนแทนด้วย |''a''| เท่ากับ ''a'' ถ้า ''a'' ≥ 0 และเท่ากับ −''a'' ถ้า ''a'' < 0 (ดูเพิ่มเติม: [[อสมการ]]) |''a''| จะไม่เป็นจำนวนลบ ค่าสัมบูรณ์จะเป็น[[จำนวนบวก]]หรือ[[ศูนย์]]เสมอ นั่นคือจะไม่มีค่า ''a'' ที่ |''a''| < 0
ค่าสัมบูรณ์สามารถถือว่าเป็น''ระยะทาง''ของจำนวนนั้นจากศูนย์ สัญกรณ์ของ[[ระยะทาง]]ในคณิตศาสตร์มักเขียนในรูปค่าสัมบูรณ์อยู่เสมอ เมื่อจำนวนจริงถูกพิจารณาเหมือนเป็นเวกเตอร์หนึ่งมิติ ค่าสัมบูรณ์คือ[[ขนาด]] และ [[p-นอร์ม]]สำหรับ p ใดๆ ที่ตัวประกอบคงที่ ทุกๆนอร์มใน '''R'''<sup>1</sup> จะเท่ากับค่าสัมบูรณ์: ||x||=||1||.|x|
== สมบัติ ==
: ''x'' − 3 ≤ -9 U ''x'' − 3 ≥ 9
: ''x'' ≤ -6 U ''x'' ≥ 12
== ค่าสัมบูรณ์และ[[จำนวนเชิงซ้อน]] ==
/-16-7x/=2x-4
...
▲"x" = (-infinity,-6] U [12,infinity) FC SKT T1
== ขั้นตอนวิธี ==
▲== อ้างอิง ==
{{Sub. Odj.}}
[[หมวดหมู่:ระบบเลข]]
[[หมวดหมู่:ฟังก์ชันพิเศษมูลฐาน]]
{{โครงคณิตศาสตร์}}
|