ผลต่างระหว่างรุ่นของ "เศษส่วนอย่างต่ำ"

ไม่มีคำอธิบายอย่างย่อ
'''เศษส่วนอย่างต่ำ''' หรือ '''เศษส่วนลดทอนไม่ได้''' คือ[[เศษส่วน]]ที่มี[[ตัวเศษ]]และ[[ตัวส่วน]]เป็นจำนวนเต็มที่น้อยที่สุด เมื่อเทียบกับเศษส่วนตัวอื่นที่เทียบเท่ากัน ซึ่งสามารถแสดงให้เห็นว่า เศษส่วน {{เศษ|a|b}} จะเป็นเศษส่วนอย่างต่ำ ก็ต่อเมื่อ ''a'' และ ''b'' มี[[ตัวหารร่วมมาก]]เท่ากับ 1
 
ถ้ากำหนดให้ ''a'', ''b'', ''c'', ''d'' เป็น[[จำนวนเต็ม]]ทั้งหมด ดังนั้นเศษส่วน {{เศษ|a|b}} จะเป็นเศษส่วนอย่างต่ำ ก็ต่อเมื่อ ไม่มีเศษส่วนอื่นๆ {{เศษ|c|d}} ที่เทียบเท่า {{เศษ|a|b}} ซึ่งทำให้ |''c''| < |''a''| และ |''d''| < |''b''| โดยสัญลักษณ์ |''a''| หมายถึง[[ค่าสัมบูรณ์]]ของ ''a'' นิยามนี้มีความทั่วไปมากกว่าและขยายขอบเขตไปได้มากกว่าตัวส่วนธรรมดา และเป็นสิ่งสำคัญที่ใช้ทดสอบความเป็น[[จำนวนตรรกยะ]]ของจำนวนหนึ่งๆ
130,914

การแก้ไข