ผลต่างระหว่างรุ่นของ "กลศาสตร์ดั้งเดิม"

ป้ายระบุ: แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่ การแก้ไขแบบเห็นภาพ
'''กลศาสตร์ดั้งเดิม''' เป็นหนึ่งในสองวิชาที่สำคัญที่สุดของ[[กลศาสตร์]] (โดยอีกวิชาหนึ่ง คือ [[กลศาสตร์ควอนตัม]]) ซึ่งอธิบายถึงการเคลื่อนที่ของวัตถุต่าง ๆ ภายใต้อิทธิพลจากระบบของ[[แรง]] โดยวิชานี้ถือเป็นวิชาที่ครอบคลุมในด้าน[[วิทยาศาสตร์]] [[วิศวกรรม]] และ[[เทคโนโลยี]]มากที่สุดวิชาหนึ่ง อีกทั้งยังเป็นวิชาที่เก่าแก่ ซึ่งมีการศึกษาในการเคลื่อนที่ของวัตถุตั้งแต่สมัยโบราณ โดยกลศาสตร์ดั้งเดิมรู้จักในวงกว้างว่า [[กลศาสตร์นิวตัน]]
 
ในทาง[[ฟิสิกส์]] กลศาสตร์ดั้งเดิมอธิบายการเคลื่อนที่ของวัตถุขนาดใหญ่โดยแปลงการเคลื่อนที่ต่าง ๆ ให้กลายเป็นส่วนของเครื่องจักรกล เหมือนกันกับวัตถุทางดาราศาสตร์ อาทิ [[ยานอวกาศ]] [[ดาวเคราะห์]] [[ดาวฤกษ์]] และ [[ดาราจักร]] รวมถึงครอบคลุมไปยังทุกสถานะของสสาร ทั้ง[[ของแข็ง]] [[ของเหลว]] และ[[แก๊ส]] โดยจะให้ผลลัพธ์ที่มีความแม่นยำสูง แต่เมื่อวัตถุมีขนาดเล็กหรือมีความเร็วที่สูงใกล้เคียงกับ[[ความเร็วแสง]] กลศาสตร์ดั้งเดิมจะมีความแม่นยำถูกต้องที่ต่ำลง ต้องใช้กลศาสตร์ควอนตัมในการศึกษาแทนกลศาสตร์ดั้งเดิมเพื่อให้มีความแม่นยำถูกต้องในการคำนวณสูงขึ้น โดยกลศาสตร์ควอนตัมจะเหมาะสมที่จะศึกษาการเคลื่อนที่ของวัตถุที่มีขนาดเล็กมาก ซึ่งได้ถูกปรับแต่งให้เข้ากับลักษณะของอะตอมในส่วนของ[[ทวิภาคของคลื่น-อนุภาค|ความเป็นคลื่น-อนุภาค]]ใน[[อะตอม]]และ[[โมเลกุล]] แต่เมื่อกลศาสตร์ทั้งสองไม่สามารถใช้ได้ จากกรณีที่วัตถุขนาดเล็กเคลื่อนที่ด้วยความเร็วสูง [[ทฤษฎีสนามควอนตัม]]จึงเป็นตัวเลือกที่นำมาใช้ในการคำนวณแทนกลศาสตร์ทั้งสอง
 
คำว่า ''กลศาสตร์ดั้งเดิม'' ได้ถูกใช้เป็นครั้งแรกในช่วงต้นคริสต์ศตวรรษที่ 20 เพื่อกล่าวถึงระบบทางฟิสิกส์ของ[[ไอแซก นิวตัน]]และ[[นักปรัชญาธรรมชาติ]]คนอื่นที่อยู่ร่วมสมัยในช่วงคริสต์ศตวรรษที่ 17 ประกอบกับทฤษฎีทางดาราศาสตร์ในช่วงแรกเริ่มของ[[โยฮันเนส เคปเลอร์]]จากข้อมูลการสังเกตที่มีความแม่นยำสูงของ[[ไทโค บราเฮ]] และการศึกษาในการเคลื่อนที่ต่าง ๆ ที่อยู่บนโลกของ[[กาลิเลโอ กาลิเลอี|กาลิเลโอ]] โดยมุมมองของฟิสิกส์ได้ถูกเปลี่ยนแปลงเรื่อยมาอย่างยาวนานก่อนที่จะมี[[ทฤษฎีสัมพัทธภาพ]]และกลศาสตร์ควอนตัม ซึ่งแต่เดิม ในบางแห่งทฤษฎีสัมพัทธภาพของ[[อัลเบิร์ต ไอน์สไตน์|ไอน์สไตน์]]ไม่ถูกจัดอยู่ในกลศาสตร์ดั้งเดิม แต่อย่างไรก็ตามเมื่อเวลาผ่านไป หลายแห่งเริ่มจัดให้สัมพัทธภาพเป็นกลศาสตร์ดั้งเดิมในรูปแบบที่แม่นยำถูกต้อง และถูกพัฒนามากที่สุด
 
แต่เดิมนั้น การพัฒนาในส่วนของกลศาสตร์ดั้งเดิมมักจะกล่าวถึงกลศาสตร์นิวตัน ซึ่งมีการใช้หลักการทางฟิสิกส์ประกอบกับวิธีการทางคณิตศาสตร์โดยนิวตัน [[กอทท์ฟรีด วิลเฮล์ม ไลบ์นิซ|ไลบ์นิซ]] และบุคคลอื่นที่เกี่ยวข้อง และวิธีการปกติหลายอย่างได้ถูกพัฒนา นำมาสู่การกำหนดกลศาสตร์ครั้งใหม่ ไม่ว่าจะเป็น [[กลศาสตร์แบบลากรางจ์]] และ[[กลศาสตร์แฮมิลตัน]] ซึ่งสิ่งเหล่านี้ได้ถูกพัฒนาขึ้นเป็นอย่างมากในช่วงคริสต์ศตวรรษที่ 18 และ 19 อีกทั้งได้ขยายความรู้เป็นอย่างมากพร้อมกับกลศาสตร์นิวตันโดยเฉพาะอย่างยิ่งการนำกลศาสตร์เหล่านี้ไปใช้ใน[[กลศาสตร์เชิงวิเคราะห์]]อีกด้วย
เพื่อความง่ายในการวิเคราะห์ วัตถุที่อยู่ในโลกของความเป็นจริงจะถูกจำลองให้อยู่ในรูปของ[[อนุภาคจุด]] (ไม่สนใจในขนาดของวัตถุ) โดยการเคลื่อนที่ของอนุภาคจุดจะมีการกำหนเป็นพารามิเตอร์ที่มีค่าน้อยุ ได้แก่ ตำแหน่งของวัตถุ [[มวล]] และแรงที่กระทำต่อวัตถุ ซึ่งจะกำหนดไว้เป็นตัวเลขที่อาจมีหน่วยกำหนดไว้ และกล่าวถึงมาเป็นลำดับ
 
เมื่อมองจากความเป็นจริง วัตถุต่าง ๆ ที่กลศาสตร์ดั้งเดิมกำหนดไว้ว่าวัตถุมีขนาดไม่เป็น[[0|ศูนย์]]เสมอ (ซึ่งถ้าวัตถุที่มีขนาดเล็ก''มาก ๆ'' อย่างเช่น [[อิเล็กตรอน]] [[กลศาสตร์ควอนตัม]]จะอธิบายได้อย่างแม่นยำถูกต้องกว่ากลศาสตร์ดั้งเดิม) วัตถุที่มีขนาดไม่เป็นศูนย์จะมีความซับซ้อนในการศึกษามากกว่าอนุภาคจุดตามทฤษฎี เพราะวัตถุมีระดับความอิสระ ([[:en:Degrees_of_freedom_(physics_and_chemistry)|Degrees of freedom]]) ที่มาก อาทิ ลูก[[เซปักตะกร้อ|ตะกร้อ]]สามารถหมุนได้ขณะเคลื่อนที่หลังจากที่ถูกเดาะขึ้นไปบนอากาศ อย่างไรก็ตาม ผลลัพธ์สำหรับอนุภาคจุดสามารถใช้ในการศึกษาจำพวกวัตถุทั่วไปได้โดยสมมุติว่าเป็นวัตถุนั้น หรือสร้างอนุภาคจุดสมมุติหลาย ๆ จุดขึ้นมา ดังเช่น[[ศูนย์กลางมวล|จุดศูนย์กลางมวล]]ของวัตถุที่แสดงเป็นอนุภาคจุด
 
กลศาสตร์ดั้งเดิมใช้[[สามัญสำนึก]]เป็นแนวว่าสสารและแรงเกิดขึ้นและมีปฏิสัมพันธ์กันอย่างไร โดยตั้งสมมุติฐานว่าสสารและพลังงานมีความแน่นอน และมีคุณสมบัติที่รู้อยู่แล้ว ได้แก่ ตำแหน่งของวัตถุใน[[ปริภูมิ]] (Space) และความเร็วของวัตถุ อีกทั้งยังสามารถสมมุติว่ามีอิทธิพลโดยตรงกับสิ่งที่อยู่รอบวัตถุในขณะนั้นได้อีกด้วย (หรือเรียกอีกอย่างหนึ่งว่า [[:en:Principle_of_locality|Principle of locality]])
==ข้อจำกัดของกลศาสตร์ดั้งเดิม==
 
[[File:Mechanics Subfields Domain.svg|thumb|กลศาสตร์ดั้งเดิมเมื่อเปรียบเทียบกับกลศาสตร์อื่นในขอบเขตศึกษาของความเร็วและขนาดของวัตถุ|400x400px]]หลาย ๆ สาขาของกลศาสตร์ดั้งเดิมเป็นการประมาณการของรูปแบบที่มีความแม่นยำถูกต้องกว่า ซึ่งกลศาสตร์ดั้งเดิมที่มีความแม่นยำถูกต้องที่สุด 2 อัน คือ ทฤษฎีสัมพัทธภาพพิเศษ และ กลศาสตร์เชิงสถิติแบบสัมพัทธภาพ เช่น ทัศนศาสตร์เชิงเรขาคณิตเป็นการประมาณของทฤษฎีควอนตัมของแสง และไม่มีรูปแบบที่ดีกว่านี้ในกลศาสตร์ดั้งเดิมอีก
 
เมื่อทั้งกลศาสต์ควอนตัมและกลศาสตร์ดั้งเดิมไม่สามารถใช้ได้ เช่น ในระดับขนาดที่เล็กมาก ๆ ที่มีระดับความเป็นอิสระมาก ทฤษฎีสนามควอนตัมจึงถูกนำมาใช้แทน ซึ่งทฤษฎีสนามควอนตัมจะใช้ในระยะทางที่ใกล้และมีความเร็วที่สูงด้วยระดับความเป็นอิสระที่มาก พอ ๆ กับความเป็นไปได้ที่จำนวนของอนุภาคจะเปลี่ยนไปด้วย[[อันตรกิริยา]] เมื่อเปลี่ยนระดับขนาดเป็นขนาดใหญ่ขึ้น กลศาสตร์สถิติเริ่มสามารถใช้ได้ ซึ่งกลศาสตร์สถิติอธิบายพฤติกรรมของอนุภาคจำนวนมาก (แต่ยังสามารถนับได้) และปฏิกิริยาในระดับขนาดใหญ่ กลศาสตร์สถิติถูกใช้หลัก ๆ กับอุณหพลศาสตร์สำหรับระบบที่ยังอยู่ในอุณหพลศาสตร์ดั้งเดิม ในกรณีสำหรับวัตถุที่มีความเร็วสูงใกล้เคียงความเร็วแสง กลศาสตร์ดั้งเดิมถูกเพิ่มเติมโดยทฤษฎีสัมพัทธภาพพิเศษ ทฤษฎีสัมพัทธภาพทั่วไปได้รวมทฤษฎีสัมพัทธภาพพิเศษและกฎแรงโน้มถ่วงสากลของนิวตัน ให้นักฟิสิกส์ได้ศึกษาความโน้มถ่วงในระดับที่ลึกยิ่งขึ้น
และสิ่งนี้ได้เกิดขึ้นกับอิเล็กตรอนก่อประวัติของกลศาสตร์ดั้งเดิมนที่จะขึ้นในอนุภาคหนักในภายหลัง เช่น อิเล็กตรอนที่คลินตัน เดวิสสัน และ เลสเตอร์ เจอเมอร์ใช้ใน พ.ศ. 2470 มีความต่างศักย์ 54 โวลต์ และมีความยาวคลื่น 0.167 นาโนเมตร ซึ่งมีความยาวพอที่จะเกิดการเลี้ยวเบนพูด้านข้างอันเดียว เมื่อสะท้อนจากผิวของผลึกนิกเกิลด้วยช่องว่างระหว่างอะตอม 0.215 นาโนเมตรที่ห้องสูญญากาศขนาดใหญ่ จะเห็นได้ว่ามันง่ายที่จะเพิ่มความละเอียดเชิงมุมจากประมาณเรเดียนเป็นหลักมิลลิเรเดียน และเห็นการเลี้ยวเบนควอนตัมจากรูปแบบคาบของวงจรรวมในที่เก็บความจำของคอมพิวเตอร์
 
เมื่อมองตัวอย่างที่ใกล้ชีวิตประจำวันมากขึ้นของความล้มเหลวในกลศาสตร์ดั้งเดิมที่มีอยู่ในอัตราส่วนวิศวกรรม คือ การทำอุโมงค์ควอนตัม (Quantum Tunneling) ภายในอุโมงค์ไดโอด และมีประตูทรานซิสเตอร์ (Transistor gate) ที่แคบมากในวงจรรวม
<blockquote>เ</blockquote>{{Main|ประวัติของกลศาสตร์ดั้งเดิม}}{{See also|เส้นเวลาของกลศาสตร์ดั้งเดิม}}
 
กลศาสตร์ดั้งเดิมเป็นการประมาณการของคลื่นที่มีความที่สูงมากและเท่าเดิมตลอดดั่งทัศนศาสตร์เรขาคณิต ซึ่งมักจะมีความถูกต้องเพราะมันอธิบายอนุภาคและวัตถุที่มวลหยุดนิ่ง ซึ่งมีโมเมนตัมมากกว่าและดังนั้นความยาวคลื่นเดอบรอยสั้นกว่าอนุภาคที่ไม่มีมวล เช่น แสงที่มีพลังงานจลน์เท่าเดิม
 
== ประวัติ ==
<blockquote>เ</blockquote>{{Main|ประวัติของกลศาสตร์ดั้งเดิม}}{{See also|เส้นเวลาของกลศาสตร์ดั้งเดิม}}
 
== สาขาวิชา ==
59

การแก้ไข