ผลต่างระหว่างรุ่นของ "กลศาสตร์ดั้งเดิม"

เนื้อหาที่ลบ เนื้อหาที่เพิ่ม
KittapatR (คุย | ส่วนร่วม)
ลบคำทิ้ง
ป้ายระบุ: การแก้ไขแบบเห็นภาพ แก้ไขจากอุปกรณ์เคลื่อนที่ แก้ไขจากเว็บสำหรับอุปกรณ์เคลื่อนที่
KittapatR (คุย | ส่วนร่วม)
บรรทัด 11:
เพื่อความง่ายในการวิเคราะห์ วัตถุที่อยู่ในโลกของความเป็นจริงจะถูกจำลองให้อยู่ในรูปของ[[อนุภาคจุด]] (ไม่สนใจในขนาดของวัตถุ) โดยการเคลื่อนที่ของอนุภาคจุดจะมีการกำหนเป็นพารามิเตอร์ที่มีค่าน้อยุ ได้แก่ ตำแหน่งของวัตถุ [[มวล]] และแรงที่กระทำต่อวัตถุ ซึ่งจะกำหนดไว้เป็นตัวเลขที่อาจมีหน่วยกำหนดไว้ และกล่าวถึงมาเป็นลำดับ
 
เมื่อมองจากความเป็นจริง วัตถุต่าง ๆ ที่กลศาสตร์ดั้งเดิมกำหนดไว้ว่าวัตถุมีขนาดไม่เป็น[[0|ศูนย์]]เสมอ (ซึ่งถ้าวัตถุที่มีขนาดเล็ก''มาก ๆ'' อย่างเช่น [[อิเล็กตรอน]] [[กลศาสตร์ควอนตัม]]จะอธิบายได้อย่างแม่นยำกว่ากลศาสตร์ดั้งเดิม) วัตถุที่มีขนาดไม่เป็นศูนย์จะมีความซับซ้อนในการศึกษามากกว่าอนุภาคจุดตามทฤษฎี เพราะวัตถุมีระดับความอิสระของมันเอง ([[:en:Degrees_of_freedom_(physics_and_chemistry)|Degrees of freedom]]) ที่มาก อาทิ ลูก[[เซปักตะกร้อ|ตะกร้อ]]สามารถหมุนได้ขณะเคลื่อนที่หลังจากที่ถูกเดาะขึ้นไปบนอากาศ อย่างไรก็ตาม ผลลัพธ์สำหรับอนุภาคจุดสามารถใช้ในการศึกษาจำพวกวัตถุทั่วไปได้โดยสมมุติว่าเป็นวัตถุนั้น หรือสร้างอนุภาคจุดสมมุติหลาย ๆ จุดขึ้นมา ดังเช่น[[ศูนย์กลางมวล|จุดศูนย์กลางมวล]]ของวัตถุที่แสดงเป็นอนุภาคจุด
 
กลศาสตร์ดั้งเดิมใช้[[สามัญสำนึก]]เป็นแนวว่าสสารและแรงเกิดขึ้นและมีปฏิสัมพันธ์กันอย่างไร โดยตั้งสมมุติฐานว่าสสารและพลังงานมีความแน่นอน และมีคุณสมบัติที่รู้อยู่แล้ว ได้แก่ ตำแหน่งของวัตถุใน[[ปริภูมิ]] (Space) และความเร็วของวัตถุ อีกทั้งยังสามารถสมมุติว่ามีอิทธิพลโดยตรงกับสิ่งที่อยู่รอบวัตถุในขณะนั้นได้อีกด้วย (หรือเรียกอีกอย่างหนึ่งว่า [[:en:Principle_of_locality|Principle of locality]])
บรรทัด 198:
 
=== นอกเหนือจากกฎของนิวตัน ===
กลศาสตร์ดั้งเดิมสามารถอธิบายการเคลื่อนที่ที่ซับซ้อนกว่านี้อย่างอนุภาคที่มีลักษณะไม่คล้ายจุด กฎของออยเลอร์ช่วยให้ขยายการใช้กฎของนิวตันในส่วนนี้ เช่นเดียวกับแนวคิดของโมเมนตัมเชิงมุมจะขึ้นอยู่กับแคลคูลัสชุดเดียวกันที่อธิบายการเคลื่อนที่ในหนึ่งมิติ สมการจรวดได้ขยายแนวคิดของอัตราการเปลี่ยนแปลงของโมเมนตัมซึ่งมีผลกระทบ คือ การสูญเสียมวล
 
กลศาสตร์ดั้งเดิมได้มีการจัดรูปที่แตกต่างจากกลศาสตร์นิวตันอยู่สองแบบที่สำคัญ คือ กลศาสตร์แบบลากรางจ์ และ กลศาสตร์แฮมิลตัน ซึ่งกลศาสตร์เหล่านี้หรือการจัดรูปในยุคใหม่มักไม่ใช้แนวคิดของ "แรง" โดยจะแทนด้วยปริมาณทางฟิสิกส์อื่น ๆ เช่น พลังงาน อัตราเร็ว และ โมเมนตัม เพื่ออธิบายระบบกลไกในพิกัดทั่วไป
บรรทัด 206:
==ข้อจำกัดของกลศาสตร์ดั้งเดิม==
 
[[File:Mechanics Subfields Domain.svg|thumb|กลศาสตร์ดั้งเดิมเมื่อเปรียบเทียบกับกลศาสตร์อื่นในขอบเขตศึกษาของความเร็วและขนาดของวัตถุ|400x400px]]หลาย ๆ สาขาของกลศาสตร์ดั้งเดิมเป็นการประมาณการของรูปแบบที่มีความแม่นยำกว่า ซึ่งกลศาสตร์ที่มีความแม่นยำที่สุด 2 อัน คือ ทฤษฎีสัมพัทธภาพพิเศษ และ กลศาสตร์เชิงสถิติแบบสัมพัทธภาพ เช่น ทัศนศาสตร์เชิงเรขาคณิตเป็นการประมาณของทฤษฎีควอนตัมของแสง และไม่มีรูปแบบที่ดีกว่านี้ในกลศาสตร์ดั้งเดิมอีก
 
เมื่อทั้งกลศาสต์ควอนตัมและกลศาสตร์ดั้งเดิมไม่สามารถใช้ได้ เช่น ในระดับขนาดที่เล็กมาก ๆ ที่มีระดับความเป็นอิสระมาก ทฤษฎีสนามควอนตัมจึงถูกนำมาใช้แทน ซึ่งทฤษฎีสนามควอนตัมจะใช้ในระยะทางที่ใกล้และมีความเร็วที่สูงด้วยระดับความเป็นอิสระที่มาก พอ ๆ กับความเป็นไปได้ที่จำนวนของอนุภาคจะเปลี่ยนไปด้วย[[อันตรกิริยา]] เมื่อเปลี่ยนระดับขนาดเป็นขนาดใหญ่ขึ้น กลศาสตร์สถิติเริ่มสามารถใช้ได้ ซึ่งกลศาสตร์สถิติอธิบายพฤติกรรมของอนุภาคจำนวนมาก (แต่ยังสามารถนับได้) และปฏิกิริยาในระดับขนาดใหญ่ กลศาสตร์สถิติถูกใช้หลัก ๆ กับอุณหพลศาสตร์สำหรับระบบที่ยังอยู่ในอุณหพลศาสตร์ดั้งเดิม ในกรณีสำหรับวัตถุที่มีความเร็วสูงใกล้เคียงความเร็วแสง กลศาสตร์ดั้งเดิมถูกเพิ่มเติมโดยทฤษฎีสัมพัทธภาพพิเศษ ทฤษฎีสัมพัทธภาพทั่วไปได้รวมทฤษฎีสัมพัทธภาพพิเศษและกฎแรงโน้มถ่วงสากลของนิวตัน ให้นักฟิสิกส์ได้ศึกษาความโน้มถ่วงในระดับที่ลึกยิ่งขึ้น
 
=== การคาดประมาณในกลศาสตร์นิวตันกับทฤษฎีสัมพัทธภาพพิเศษ ===
ในทฤษฎีสัมพัทธภาพพิเศษ โมเมนตัมของอนุภาคให้นิยามโดย
 
<math>\bold{p}={m\bold{v} \over \sqrt{1-{v^2 \over c^2}}}</math>
 
เมื่อ ''m'' คือมวลของอนุภาคที่อยู่นิ่ง '''v''' คือความเร็วของอนุภาค และ ''c'' คือความเร็วแสง
 
ถ้า ''v'' มีค่าน้อยมาเมื่อเทียบกับ ''c'' ทำให้ v<sup>2</sup>/c<sup>2</sup> มีค่าประมาณ 0 แล้ว
 
<math>\bold{p}\approx m\bold{v}</math>
 
ดังนั้นสมการแบบนิวตัน '''p''' = m'''v''' เป็นการประมาณของสมการแบบสัมพัทธภาพสำหรับวัตถุที่เคลื่อนที่ด้วยความเร็วที่น้อยเมื่อเทียบกับความเร็วแสง
 
ยกตัวอย่างเช่น ความถี่ไซโคลตรอนแบบสัมพัทธภาพสำหรับเครื่องเร่งอนุภาคไซโคลตรอน (Cyclotron) ท่อไจโรตรอน (Gyrotron) หรือ แมกนิตรอน (Magnetron) สามารถเขียนได้ว่า
 
<math>f=f_\mathrm{c}{m_0 \over m_0+{T \over c^2}}</math>
 
ซึ่ง f<sub>c</sub> คือความถี่ของอนุภาคประจุ (เช่น อิเล็กตรอน) ในกลศาสตร์ดั้งเดิมด้วยพลังงานจลน์ ''T'' และมวลที่อยู่นิ่ง ''m''<sub>0</sub> วิ่งวนอยู่รอบสนามแม่เหล็ก ซึ่งมวลที่อยู่นิ่งของอิเล็กตรอนมีค่าเท่ากับ 511 keV ดังนั้นความถูกต้องความถี่ของอิเล็กตรอนเท่ากับร้อยละ 1 ของท่อแม่เหล็กสูญญากาศด้วยกระแสตรงที่มีค่าความต่างศักย์ 5.11 kV
 
=== การคาดประมาณในกลศาสตร์ดั้งเดิมกับกลศาสตร์ควอนตัม ===