ผลต่างระหว่างรุ่นของ "กลศาสตร์ดั้งเดิม"

ไม่มีคำอธิบายอย่างย่อ
 
=== ตำแหน่งและอนุพันธ์ของตำแหน่ง ===
{{Main|พลศาสตร์}}
{{Main|พลศาสตร์}}''ตำแหน่ง'' ของอนุภาคจุดได้ถูกกำหนดตามจุดอ้างอิงที่กำหนดได้เองในปริภูมิ เรียกว่า จุดกำเนิด (Origin) ซึ่งในปริภูมิ จะให้ตำแหน่งอยู่ใน[[ระบบพิกัด]] โดยในระบบพิกัดอย่างง่ายมักกำหนดตำแหน่งวัตถุ และมีลูกศรที่มีทิศทางเป็น[[เวกเตอร์]]ในกลศาสตร์ดั้งเดิม โดยเริ่มจากจุดกำเนิดลากไปยังตำแหน่งของวัตถุ เช่น ตำแหน่ง '''r''' อยู่ในฟังก์ชันของ ''t'' (เวลา) ในสัมพัทธภาพช่วงก่อนไอน์สไตน์ (หรือเป็นที่รู้จักในชื่อ [[สัมพัทธภาพกาลิเลโอ]]) เวลาเป็นสิ่งสัมบูรณ์ คือ เวลาที่สังเกตมีระยะเท่ากันหมดในทุกผู้สังเกต ยิ่งไปกว่า[[เวลาสัมบูรณ์]] กลศาสตร์ดั้งเดิมยังให้โครงสร้างของปริภูมิมีลักษณะโครงสร้างเป็น[[เรขาคณิตยูคลิด]]อีกด้วย
{|class="wikitable" style="float:right; margin:0 0 1em 1em;"
|-
|colspan="2" style="text-align:center;"|หน่วยอนุพันธ์ [[ระบบหน่วยวัดระหว่างประเทศ|SI]] ที่เกี่ยวข้องกับเครื่องกล
(โดยไม่เกี่ยวข้องกับฟิสิกส์แม่เหล็กไฟฟ้าหรือฟิสิกส์อุณหภาพ)
 
ในหน่วยของ[[กิโลกรัม]] [[เมตร]] และ[[วินาที]]
==== อัตราเร็วและความเร็ว ====
|-
{{main|อัตราเร็ว|ความเร็ว}}อัตราเร็ว หรือ อัตราการเปลี่ยนของตำแหน่งต่อเวลา ได้นิยามไว้ด้วย[[อนุพันธ์]]ของตำแหน่งด้วยเวลาดังนี้
|position||m
|-
|angular position/[[angle]]||unitless (radian)
|-
|[[velocity]]||m·s<sup>−1</sup>
|-
|[[angular velocity]]||s<sup>−1</sup>
|-
|[[acceleration]]||m·s<sup>−2</sup>
|-
|[[angular acceleration]]||s<sup>−2</sup>
|-
|[[Jerk (physics)|jerk]]||m·s<sup>−3</sup>
|-
|"angular jerk"||s<sup>−3</sup>
|-
|[[specific energy]]||m<sup>2</sup>·s<sup>−2</sup>
|-
|absorbed dose rate||m<sup>2</sup>·s<sup>−3</sup>
|-
|[[moment of inertia]]||kg·m<sup>2</sup>
|-
|[[momentum]]||kg·m·s<sup>−1</sup>
|-
|[[angular momentum]]||kg·m<sup>2</sup>·s<sup>−1</sup>
|-
|[[force]]||kg·m·s<sup>−2</sup>
|-
|[[torque]]||kg·m<sup>2</sup>·s<sup>−2</sup>
|-
|[[energy]]||kg·m<sup>2</sup>·s<sup>−2</sup>
|-
|[[Power (physics)|power]]||kg·m<sup>2</sup>·s<sup>−3</sup>
|-
|[[pressure]] and [[energy density]]||kg·m<sup>−1</sup>·s<sup>−2</sup>
|-
|[[surface tension]]||kg·s<sup>−2</sup>
|-
|[[spring constant]]||kg·s<sup>−2</sup>
|-
|[[irradiance]] and [[energy flux]]||kg·s<sup>−3</sup>
|-
|[[kinematic viscosity]]||m<sup>2</sup>·s<sup>−1</sup>
|-
|[[dynamic viscosity]]||kg·m<sup>−1</sup>·s<sup>−1</sup>
|-
|[[density]] (mass density)||kg·m<sup>−3</sup>
|-
|[[density]] (weight density)||kg·m<sup>−2</sup>·s<sup>−2</sup>
|-
|[[number density]]||m<sup>−3</sup>
|-
|[[Action (physics)|action]]||kg·m<sup>2</sup>·s<sup>−1</sup>
|}
{{Main|พลศาสตร์}}''ตำแหน่ง'' ของอนุภาคจุดได้ถูกกำหนดตามจุดอ้างอิงที่กำหนดได้เองในปริภูมิ เรียกว่า จุดกำเนิด (Origin) ซึ่งในปริภูมิ จะให้ตำแหน่งอยู่ใน[[ระบบพิกัด]] โดยในระบบพิกัดอย่างง่ายมักกำหนดตำแหน่งวัตถุ และมีลูกศรที่มีทิศทางเป็น[[เวกเตอร์]]ในกลศาสตร์ดั้งเดิม โดยเริ่มจากจุดกำเนิดลากไปยังตำแหน่งของวัตถุ เช่น ตำแหน่ง '''r''' อยู่ในฟังก์ชันของ ''t'' ([[เวลา]]) ในสัมพัทธภาพช่วงก่อนไอน์สไตน์ (หรือเป็นที่รู้จักในชื่อ [[สัมพัทธภาพกาลิเลโอ]]) เวลาเป็นสิ่งสัมบูรณ์ คือ เวลาที่สังเกตมีระยะเท่ากันหมดในทุกผู้สังเกต ยิ่งไปกว่า[[เวลาสัมบูรณ์]] กลศาสตร์ดั้งเดิมยังให้โครงสร้างของปริภูมิมีลักษณะโครงสร้างเป็น[[เรขาคณิตยูคลิด]]อีกด้วย
 
==== อัตราความเร็วและความอัตราเร็ว ====
{{main|อัตราความเร็ว|ความอัตราเร็ว}}อัตราความเร็ว หรือ อัตราการเปลี่ยนของตำแหน่งต่อเวลา ได้นิยามไว้ด้วย[[อนุพันธ์]]เวลาของตำแหน่งด้วยเวลาดังนี้
 
<math>\mathbf{v} = {\mathrm{d}\mathbf{r} \over \mathrm{d}t}\,\!</math>
 
โดยกำหนดให้ '''v''' เป็นอัตราความเร็ว d'''r''' เป็นเวกเตอร์ระยะห่างของตำแหน่งเดิมและตำแหน่งใหม่ dt เป็นระยะเวลาที่ใช้เวลาเคลื่อนที่ไปยังตำแหน่งใหม่
 
ในกลศาสตร์ดั้งเดิม อัตราความเร็วสามารถเพิ่มและลดได้โดยตรง ยกตัวอย่างเช่น ถ้ารถโดยสารประจำทางสายหนึ่งเดินทางไปทิศตะวันตกด้วยอัตราความเร็ว 40 กม./ชม.ทิศตะวันตก แล้วมีรถจักรยานยนต์คันหนึ่งเดินทางไปยังทิศตะวันออกด้วยอัตราความเร็ว 25 กม./ชม. ไปยังทิศตะวันออก เมื่อมองจากรถจักรยานยนต์ซึ่งมีอัตราเร็วต่ำกว่า รถโดยสารจะเดินทางด้วยอัตราความเร็ว 40-25 = 15 กม./ชม. ด้านทิศตะวันตก อีกด้านหนึ่ง ในด้านของรถโดยสารประจำทาง จะเห็นรถจักรยานเดินทางด้วยอัตราความเร็ว 15 กม./ชม. ด้านทิศตะวันออก ดังนั้นอัตราความเร็วสามารถเพิ่มหรือลดได้เป็นปริมาณเวกเตอร์ ซึ่งต้องจัดการโดยเวกเตอร์เชิงวิเคราะห์
 
ในทางคณิตศาสตร์ ถ้าอัตราความเร็วของวัตถุแรกให้เป็น '''u'''=u'''d''' อัตราและความเร็วของวัตถุที่สองให้เป็น '''v='''v'''e''' โดย v และ u เป็นความอัตราเร็วของวัตถุแรก และวัตถุที่สองตามลำดับ และ '''d''' กับ '''e''' เป็นเวกเตอร์หนึ่งหน่วยซึ่งแสดงถึงทิศทางการเคลื่อนที่ของวัตถุ และอัตราดังนั้นความเร็วของวัตถุแรกที่เห็นโดยวัตถุที่สอง คือ
 
<math>\mathbf{u}' = \mathbf{u} - \mathbf{v} \, .</math>
<math>\mathbf{u}' = ( u - v ) \mathbf{d} \, .</math>
 
หรือถ้าไม่คำนึงถึงทิศทาง ความต่างนี้จะอยู่ในรูปของความอัตราเร็วเท่านั้น ดังสมการนี้
 
<math>u' = u - v \, .</math>
 
==== อัตราความเร่ง ====
{{main|ความเร่ง}}''ความเร่ง'' หรืออัตราการเปลี่ยนแปลงของความเร็วคืออนุพันธ์เวลาของความเร็ว (อนุพันธ์เวลาที่สองของตำแหน่ง) สามารถแสดงได้ดังนี้
{{main|อัตราเร่ง}}{{สาขาฟิสิกส์}}
 
<math>\mathbf{a} = {\mathrm{d}\mathbf{v} \over \mathrm{d}t} = {\mathrm{d^2}\mathbf{r} \over \mathrm{d}t^2}.</math>
 
{{main|อัตราเร่ง}}{{สาขาฟิสิกส์}}
 
[[หมวดหมู่:กลศาสตร์ดั้งเดิม]]
59

การแก้ไข