ผลต่างระหว่างรุ่นของ "พื้นที่"

เพิ่มขึ้น 1,530 ไบต์ ,  6 ปีที่แล้ว
ไม่มีคำอธิบายอย่างย่อ
 
พื้นที่ของรูปร่างสามารถวัดได้โดยการเปรียบเทียบกับ[[รูปสี่เหลี่ยมจัตุรัส]]ที่มีขนาดตายตัวขนาดหนึ่ง <ref name=AF/> หน่วยมาตรฐานของพื้นที่ใน[[หน่วยเอสไอ]]คือ [[ตารางเมตร]] (m<sup>2</sup>) ซึ่งเป็นพื้นที่ของรูปสี่เหลี่ยมจัตุรัสที่มีด้านยาวด้านละหนึ่ง[[เมตร]] <ref name=B>[[Bureau International des Poids et Mesures]] [http://www.bipm.org/en/CGPM/db/11/12/ Resolution 12 of the 11th meeting of the CGPM (1960)], retrieved 15 July 2012</ref> รูปร่างที่มีพื้นที่เท่ากับสามตารางเมตร จะเหมือนกับพื้นที่ของรูปสี่เหลี่ยมจัตุรัสเช่นนั้นสามรูป ในทาง[[คณิตศาสตร์]] หน่วย[[ตารางหน่วย]]ถูกนิยามขึ้นให้มีพื้นที่เท่ากับ "หนึ่ง" และพื้นที่ของรูปร่างหรือพื้นผิวอื่น ๆ ก็จะเป็น[[จำนวนจริง]][[ไร้มิติ]]จำนวนหนึ่ง
 
สูตรคำนวณหาพื้นที่ของรูปร่างพื้นฐานหลายสูตรเป็นที่รู้จักโดยทั่วไป เช่น [[รูปสามเหลี่ยม]] [[รูปสี่เหลี่ยมมุมฉาก]] [[รูปวงกลม]] เป็นต้น จากการใช้สูตรเหล่านี้ พื้นที่ของ[[รูปหลายเหลี่ยม]]ใด ๆ สามารถหาได้จาก[[โครงข่ายสามเหลี่ยมของรูปหลายเหลี่ยม|การแบ่งรูปหลายเหลี่ยมเป็นรูปสามเหลี่ยม]] <ref name=bkos>{{Cite book |author1=Mark de Berg |author2=Marc van Kreveld |author3=Mark Overmars |author3-link=Mark Overmars |author4=Otfried Schwarzkopf |year=2000 |title=Computational Geometry |publisher=[[Springer-Verlag]] |edition=2nd revised |isbn=3-540-65620-0 |chapter=Chapter 3: Polygon Triangulation |pages=45–61 |postscript=}}</ref> ส่วนรูปร่างที่มีขอบเขตเป็นเส้นโค้งมักจะคำนวณพื้นที่ได้ด้วย[[แคลคูลัส]] <ref>{{cite book|first=Carl B. |last=Boyer |authorlink=Carl Benjamin Boyer |title=A History of the Calculus and Its Conceptual Development |publisher=Dover |year=1959 |isbn=0-486-60509-4}}</ref>
 
== อ้างอิง ==
130,279

การแก้ไข