ผลต่างระหว่างรุ่นของ "ไฟฟ้ากระแสสลับ"

เก็บกวาดบทความด้วยบอต
ไม่มีความย่อการแก้ไข
(เก็บกวาดบทความด้วยบอต)
'''ไฟฟ้ากระแสสลับ'''
[[Fileไฟล์:Types of current.svg|thumb|140px|ภาพแสดงความแตกต่างระหว่างไฟฟ้ากระแสตรงและไฟฟ้ากระแสสลับ กระแสตรงอาจเป็นบวกหรือลบก็ได้อย่างใดอย่างหนึ่ง ไม่ไปก็กลับ แต่กระแสสลับ วิ่งไปวิ่งกลับตลอดเวลา จำนวนรอบของไทยคือ 50 รอบต่อวินาที หรือ 50 Hz]]
หรือ {{lang-en|Alternating Current Electricity}} (AC หรือ ac) หมายถึงกระแสที่มีทิศทางไปและกลับตลอดระยะเวลา ไม่เหมือนกระแสตรง (Direct Current, DC หรือ dc) ที่ไหลไปในทิศทางเดียว ไม่ไหลกลับ
 
ไฟ AC เป็นไฟฟ้าสำหรับบ้านเรือนหรือธุรกิจอุตสาหกรรมที่ใช้ปริมาณไฟมากๆ รูปคลื่นเป็น sine wave ในบางกรณี รูปคลื่นอาจเป็นสามเหลี่ยมหรือสี่เหลี่ยม
[[Fileไฟล์:2-level-animation.gif|thumb|140px|ภาพจำลองการส่งคลื่น AC จาก generator ซึ่งส่งพลังงานกลับทิศทางตลอดเวลา]]
==ประวัติ==
[[Fileไฟล์:Guillaume Duchenne de Boulogne performing facial electrostimulus experiments.jpg|thumb|140px|การทดลองกระตุ้นด้วยไฟฟ้าที่หน้าโดย Duchenne]]
เครื่องกำเนิดไฟฟ้ากระแสสลับเครื่องแรกเป็นครั้งแรกมีพื้นฐานมาจากหลักการของไมเคิล ฟาราเดย์สร้างขึ้นโดยช่าชาวฝรั่งเศสชื่อ Hippolyte Pixii ในปี (ค.ศ.1832) หลังจากนั้น Pixii เพิ่มตัวสลับสายเข้าไปในอุปกรณ์ของเขา ซึ่งในขณะนั้นยังใช้ไฟ dc กันอย่างแพร่หลายอยู่ กระแสสลับที่เก่าแก่ที่สุดที่มีการถูกบันทึกไว้ว่าประยุกต์ใช้จริงโดย กีโยม Duchenne นักประดิษฐ์และพัฒนาไฟฟ้าบำบัด ในปี [[ค.ศ.1855]] เขาประกาศว่า AC ใช้รักษาการหดตัวของกล้ามเนื้อได้ดีกว่า DC
 
ในปี [[ค.ศ.1876]] วิศวกรชาวรัสเซียชื่อ Pavel Yablochkov คิดค้นระบบไฟส่องสว่างขึ้นโดยมีรากฐานจากชุดของขดลวดเหนี่ยวนำโดยที่ขดลวดปฐมภูมิเชื่อมต่อกับแหล่งไฟ AC ลวดทุติยภูมิสามารถเชื่อมต่อไปยังเทียนไฟฟ้า (โคมประกายไฟ) ได้หลายดวง ขดลวด Yablochkov ทำหน้าที่เป็นหม้อแปลงไฟฟ้านั่นเอง
[[Fileไฟล์:Hippodrome shined with Yablochkov candles.jpg|thumb|140px|Hippodrome กรุงปารีส ให้แสงสว่างโดยใช้เทียนของ Yablochkov 128 ดวง โดยใช้เครื่องกำเนิดไฟฟ้าและหม้อแปลงไฟฟ้า]]
หม้อแปลงไฟฟ้​​าที่ถูกพัฒนาขึ้นโดยลูเชียน Gaulard และจอห์น ดิกสัน กิ๊บส์ได้แสดงให้เห็นในลอนดอนในปี [[ค.ศ.1881]] และดึงดูดความสนใจของเวสติงเฮ้าส์ พวกเขายังแสดงสิ่งประดิษฐ์ใน Turin ในปี [[ค.ศ.1884]] ที่ๆมันถูกนำมาใช้สำหรับระบบไฟฟ้​​าแสงสว่าง งานออกแบบของพวกเขาหลายชิ้นถูกนำไปปรับใช้เป็นกฎหมายตวบคุมการกระจายไฟฟ้าในสหราชอาณาจักร
 
วิลเลียม สแตนลี่ย์ จูเนียร์ได้ออกแบบหนึ่งในอุปกรณ์จริงครั้งแรกในการถ่ายโอนไฟ AC อย่างมีประสิทธิภาพระหว่างวงจรที่แยกออกมา การใช้คู่ของขดลวดพันบนแกนเหล็กเดียวกัน เรียกว่าขดลวดเหนี่ยวนำเป็นหม้อแปลงยุคแรก ระบบไฟ AC ได้รับการพัฒนาอย่างรวดเร็วหลังปี [[ค.ศ. 1886]] และรวมทั้งการอุดหนุนโดย[[นิโคลา เทสลา]] (สิทธิบัตรให้จอร์จ เวสติงเฮ้าส์) และคาร์ล วิลเฮล์ม ซีเมนส์ ระบบ AC เอาชนะข้อจำกัด ของระบบ DC ที่ใช้โดยโทมัส เอดิสัน ในการแจกจ่ายกระแสไฟฟ้าอย่างมีประสิทธิภาพในระยะทางไกล ถึงแม้ว่าเอดิสันพยายามที่จะทำลายชื่อเสียงของกระแสสลับว่าเป็นอันตรายเกินไปในสงครามแห่งกระแส
[[Fileไฟล์:Westinghouse row of dynamos 1893.gif|thumb|140px|ภาพแสดง AC ไดนาโมของ Westinghouse ที่ให้แสงสว่างสำหรับงาน world expo ที่ชิคาโก ในปี 1893]]
 
==สายส่ง, การจำหน่าย==
[[Fileไฟล์:Ligne haute-tension.jpg|thumb|140px|ตัวอย่างสายส่งไฟฟ้าแรงสุง ประเทศไทยใช้สุงสุดที่ 500kV จากแม่เมาะ-กท.<ref>[http://www.ee.kmutt.ac.th/download/Introduction/powersys%20+%20HV.pdf‎], ระบบไฟฟ้ากำลังและไฟฟ้าแรงสูง ม.พระจอมเกล้าธนบุรี</ref>]]
แรงดันไฟฟ้า AC อาจจะเพิ่มขึ้นหรือลดลงด้วยหม้อแปลงไฟฟ้​​า การใช้แรงดันไฟฟ้าที่สูงจะมีประสิทธิภาพในการส่งพลังงานมากอย่างมีนัยสำคัญ การสูญเสียพลังงานในตัวนำเป็นผลคูณของกระแสยกกำลังสองกับค่าความต้านทานของตัวนำ ตามสูตร
 
ระบบสายส่งแบบกระแสตรงแรงดันสูง (HVDC) ทำงานตรงกันข้ามกับระบบ AC ในการส่งพลังงานระยะทางไกลๆ แต่ระบบ HVDC มีแนวโน้มที่จะมีราคาแพงกว่าและมีประสิทธิภาพน้อยกว่าถ้าระยะทางที่ส่งสั้นๆ ระบบ HVDC ยังเป็นไปไม่ได้เมื่อครั้งที่ เอดิสัน, เวสติงเฮ้าส์และเทสลาแข่งกันออกแบบระบบไฟฟ้า เพราะยังไม่มีวิธีแปลงไฟ AC เป็น DC แล้วแปลงกลับเป็น AC ใหม่ได้ด้วยเทคโนโลยีสมัยนั้น
 
[[Fileไฟล์:3phase-rmf-320x240-180fc.gif|thumb|140px|ภาพแสดงการทำงานของระบบไฟ 3 phase ซึ่งประกอบด้วยขดลวดพันรอบแกนเหล็ก 3 ชุดห่างกัน 120°]]
ระบบไฟฟ้าสามเฟสเป็นเรื่องธรรมดามาก วิธีที่ง่ายที่สุดคือการแยกขดลวดสเตเตอร์ในเครื่องกำเนิดไฟฟ้าออกเป็น 3 ชุด แต่ละชุดทำมุม 120°ซึ่งกันและกัน รูปคลื่นของกระแสจะถูกสร้างขึ้นโดยมีขนาดเท่ากันแต่เฟสต่างกัน 120° ถ้าเพิ่มขดลวดตรงข้ามกับชุดเหล่านี้ (ระยะห่าง 60 °) พวกมันจะสร้างเฟสเดียวกันแต่กระแสไฟฟ้าตรงข้ามกันและสามารถต่อสายเข้าด้วยกันได้
[[Fileไฟล์:3phase AC wave.gif|thumb|140px|ภาพแสดงรูปคลื่น 3 เฟส]]
ในทางปฏิบัติ จะใช้ "ลำดับของ pole"ที่สูงกว่า ตัวอย่างเช่นเครื่อง 12-pole จะมีขดลวด 36 ชุด (ระยะห่าง 10°) ข้อดีคือสามารถใช้ความเร็วต่ำได้ ตัวอย่างเช่นเครื่อง 2-pole ทำงานที่ 3600 รอบต่อนาทีแต่เครื่อง 12-pole ทำงานที่ 600 รอบต่อนาทีเพื่อผลิตความถี่เดียวกัน วิธีนี้ทำได้สำหรับเครื่องขนาดใหญ่
 
ถ้าโหลดในระบบสามเฟสจะมีความสมดุลกันทุกเฟส จะไม่มีการไหลของกระแสที่นิวทรอล แม้จะอยู่ในสภาวะโหลดไม่สมดุล (เชิงเส้น) ที่เลวร้ายที่สุด กระแสนิวทรอลก็จะไม่เกินกว่ากระแสสูงสุดของเฟส โหลดไม่เชิงเส้น (เช่นคอมพิวเตอร์) อาจต้องใช้สายนิวทรอลขนาดใหญ่ในแผงกระจายไฟเพื่อจัดการกับ Harmonics ที่เกิดขึ้น ฮาโมนิคส์สามารถทำให้กระแสในนิวทรอลสูงกว่ากระแสเฟสได้
[[Fileไฟล์:AC delta connection.svg|thumb|140px|แสดงการ wiring แบบ delta 3 phase 3 wire]]
 
ระบบสามเฟส สี่เส้น จะถูกใช้ที่ปลายทาง ในการลดแรงดันจากสายส่ง ด้าน primary จะเป็นเดลต้า (3 สาย) ด้าน secondary เป็นดาว (4-wire,center เป็น สายดิน)
[[Fileไฟล์:AC star connection.svg|thumb|140px|แสดงการ wiring แบบ star 3 phase 4 wire]]
สำหรับลูกค้าขนาดเล็ก อาจใช้เพียงเฟสเดียวกับนิวทรอล หรือสองเฟสกับนิวทรอล สำหรับการติดตั้งขนาดใหญ่ใช้สามเฟสกับนิวทรอล จากแผงหลักทั้งไฟสามเฟสและเฟสเดียวจะถูกจ่ายออกไป
 
 
===เทคนิคการลดความต้านทาน AC===
สำหรับความถี่ต่ำถึงความถี่กลาง ตัวนำสามารถถักเป็นสายเกลียว แต่ละเส้นเคลือบฉนวน สายไฟที่สร้างขึ้นโดยใช้เทคนิคนี้เรียกว่า Litz wire วิธีนี้้นี้จะช่วยบรรเทาผลกระทบจาก skin effect ด้วยการบังคับให้กระแสกระจายเท่าเทียมกันตลอดหน้าตัดของสายเกลียว Litz wire ถูกนำมาใช้ทำ ตัวเหนี่ยวนำคุณภาพสูง ลดการสูญเสียในตัวนำกระแสสูงแต่ความถี่ต่ำ และขดลวดของอุปกรณ์ที่ใช้คลื่นวิทยุความถี่สูงขึ้น (ถึงหลายร้อยกิโลเฮิร์ตซ์) เช่นเพาเวอร์ซัพพลายแบบสลับโหมด และหม้อแปลงไฟฟ้​​าคลื่นความถี่วิทยุ
 
===เทคนิคในการลดการสูญเสียรังสี===
 
==คณิตศาสตร์ของแรงดันไฟฟ้า AC ==
[[Fileไฟล์:Sine wave 2.svg|thumb|140px|คลื่นไซน์มากกว่าหนึ่งรอบ (360 °) เส้นประแสดงให้เห็นถึงค่า root mean square (RMS) ที่ประมาณ 0.707 ของค่าสูงสุด (peak)]]
กระแสสลับไปด้วยกัน (หรือเกิดจาก) กับแรงดันไฟฟ้า แรงดันไฟฟ้ากระแสสลับ v สามารถอธิบายทางคณิตศาสตร์ว่าเป็นฟังชั่นของเวลาโดยสมการต่อไปนี้:
 
สำหรับ230&nbsp;V AC, แรงดันไฟฟ้าสูงสุดจึงเป็น <math>\scriptstyle V_\mathrm{peak}</math>หรือประมาณ 325&nbsp;V ค่า peak-to-peak <math>\scriptstyle V_\mathrm{P-P}</math> ของ 230&nbsp;V AC เป็นสองเท่าหรือประมาณ 650&nbsp;V.
 
== ดูเพิ่ม ==
==อ่านเพิ่มเติม==
 
*[[AC power]]
417,867

การแก้ไข