ผลต่างระหว่างรุ่นของ "ต้นไม้ตัดสินใจ"

 
== ลักษณะของต้นไม้การตัดสินใจ ==
ต้นไม้การตัดสินใจจะทำการจัดกลุ่ม(classify)ชุดข้อมูลนำเข้าในแต่ละกรณี(Instance) แต่ละบัพ(node)ของต้นไม้การตัดสินใจคือตัวแปร(attribute)ต่างๆของชุดข้อมูล เช่นหากต้องการตัดสินใจว่าจะไปเล่นกีฬาหรือไม่ก็จะมีตัวแปรต้นที่จะต้องพิจารณาคือ ทัศนียภาพ ลม ความชื้น อุณหภูมิ เป็นต้น และมีตัวแปรตามซึ่งเป็นผลลัพธ์จากต้นไม้คือการตัดสินใจว่าจะไปเล่นกีฬารึเปล่า ซึ่งแต่ละตัวแปรนั้นก็จะมีค่าของตัวเอง(value) เกิดเป็นชุดของตัวแปร-ค่าของตัวแปร(attribute-value pair) เช่น ทัศนียภาพเป็นตัวแปร ก็อาจมีค่าได้เป็น ฝนตก แดดออก หรือการตัดสินใจว่าจะไปเล่นกีฬารึเปล่านั้นก็อาจมีค่าได้เป็นใช่ กับ ไม่ใช่ เป็นต้น การทำนายประเภทด้วยต้นไม้ตัดสินใจ จะเริ่มจากบัพราก โดยทดสอบค่าตัวแปรของบัพ แล้วจึงตามกิ่งของต้นไม้ที่กำหนดค่า เพื่อไปยังบัพลูกถัดไป การทดสอบนี้จะกระทำไปจนกระทั่งเจอบัพใบซึ่งจะแสดงผลการทำนาย ตัวอย่างต้นไม้ตัดสินใจแสดงในรูปข้างล่าง
 
[[ไฟล์:Decision_tree_1.jpg]]
 
ต้นไม้ตัดสินใจนี้ใช้ทำนายว่าจะเล่นกีฬาหรือไม่ โดยพิจารณาจากลักษณะอากาศของวันนั้น โดยวัตถุที่ต้องการทำนายประเภท ประกอบด้วยลักษณะหรือตัวแปร 3 ตัว ได้แก่ ทัศนียภาพ ความชื้น และ กระแสลม ดังนั้น ถ้ากำหนดวันวันหนึ่งมีคุณลักษณะแสดงเป็นเวกเตอร์ เช่น [สภาพอากาศ=แดดออก, ความชื้น=สูง] การทำนายว่าจะเล่นกีฬาหรือไม่ จะเริ่มจากบัพราก โดยทดสอบค่าตัวแปร "สภาพอากาศ" ซึ่งมีค่าเท่ากับ "แดดออก" จึงไปทดสอบค่าตัวแปร "ความชื้น" ในบัพถัดไป ทำให้ได้ประเภทของวันนี้คือ "ไม่เล่นกีฬา"
 
 
== ปัญหาที่เหมาะสมสำหรับต้นไม้การตัดสินใจ ==
ผู้ใช้นิรนาม