ตัวผกผันการบวก
ในทางคณิตศาสตร์ ตัวผกผันการบวก (อินเวิร์สการบวก) ของจำนวน n หมายถึงจำนวนที่บวกกับ n แล้วได้เอกลักษณ์การบวก นั่นคือ 0 ตัวผกผันการบวกของ n เขียนแทนด้วย −n
ตัวอย่างเช่น ตัวผกผันการบวกของ 7 คือ −7 เนื่องจาก 7 + (−7) = 0 และตัวผกผันการบวกของ −0.3 คือ 0.3 เนื่องจาก −0.3 + 0.3 = 0
ตัวผกผันการบวกของจำนวนใดๆ สามารถนิยามเป็นสมาชิกผกผัน (inverse element) ภายใต้การดำเนินการทวิภาคของการบวก และสามารถคำนวณได้โดยการคูณกับ −1 นั่นคือ −n = −1 × n
เซตของจำนวนเต็ม จำนวนตรรกยะ จำนวนจริง และจำนวนเชิงซ้อน ต่างก็มีตัวผกผันการบวก เพราะมีสมาชิกที่เป็นจำนวนลบพอๆ กับจำนวนบวก แต่จำนวนธรรมชาติ จำนวนเชิงการนับ และจำนวนเชิงอันดับที่ ไม่มีตัวผกผันการบวกอยู่ในเซต เนื่องจากจำนวนลบไม่ใช่สมาชิกของเซตดังกล่าว
นิยามทั่วไป
แก้กำหนดให้เครื่องหมายบวก + เป็นการดำเนินการทวิภาคการบวกที่มีสมบัติการสลับที่ ซึ่งการดำเนินการดังกล่าวสามารถกระทำได้บนสมาชิกเป็นกลาง o เช่น และมีเพียงหนึ่งเดียว ดังนั้นหากมีค่า x และ x' ที่ทำให้เงื่อนไขนี้เป็นจริง
จะเรียก x' ว่าเป็นตัวผกผันการบวกของ x (หรือในทางกลับกัน) และตัวผกผันการบวกนี้ก็จะมีเพียงหนึ่งเดียวสำหรับทุกๆ จำนวนจริง
ถ้าหาก + มีสมบัติการเปลี่ยนกลุ่ม ตัวผกผันการบวกก็ยังคงมีเพียงหนึ่งเดียว คือ
ตัวผกผันการบวกเขียนแทนด้วย −x และเราสามารถเขียน x − y เป็นการลบแทน x + (−y) ก็ได้
ดูเพิ่ม
แก้- เอกลักษณ์การบวก
- ตัวผกผันการคูณ (อินเวิร์สการคูณ)